Yokogawa Model ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer User's Manual
Industry Manual Repository
Join the AnalyzeDetectNetwork and Read This Manual and Hundreds of Others Like It! It's Free!
User’s Manual Model ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer IM 11M12A01-04E IM 11M12A01-04E 10th Edition i u Introduction Thank you for purchasing the ZR202G Integrated type Oxygen/Humidity Analyzer. Please read the following respective documents before installing and using the ZR202G Integrated type Oxygen/Humidity Analyzer. The related documents are as follows. General Specifications Contents Model ZR22G, ZR402G, and ZR202G Direct In Situ Zirconia Oxygen Analyzers and High Temperature Humidity Analyzers Document number Note GS 11M12A01-01E * the “E” in the document number is the language code. User’s Manual Contents Model ZR202G Integrated type Oxygen/Humidity Analyzer Model ZR22A, ZR202A Heater Assembly Model EXAxt ZR Series HART Protocol Document number IM 11M12A01-04E Note (This manual) IM 11M12A01-21E IM 11M12A01-51E * the “E” in the document number is the language code. An exclusive User’s Manual might be attached to the products whose suffix codes or option codes contain the code “Z” (made to customers’ specifications). Please read it along with this manual. The EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer is usually the Oxygen Analyzer, but it is to the High Temperature Humidity Analyzer when the option code “/HS (Set for Humidity Analyzer)” is selected. In this manual, the Oxygen Analyzer is mainly listed. When there are not mentions such as “in the case of Humidity Analyzer”, it becomes same as the Oxygen Analyzer. The EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer has been developed for combustion control in various industrial processes. There are several version of this analyzer so you can select one that matches your application. Optional accessories are also available to improve measurement accuracy and automate calibration. An optimal control system can be realized by adding appropriate options. This instruction manual describes almost all of the equipment related to the EXAxt ZR. You may skip any section(s) regarding equipment which is not included in your system. Regarding the HART Communication Protocol, refer to IM 11M12A01-51E. IM 11M12A01-51E has been published as ‘’Model EXAxt ZR series HART protocol’’. Regarding Separate type Zirconia Oxygen Analyzer, refer to IM 11M12A01-02E. No. IM 11M12A01-04E 10th Edition : May 2017 (YK) All Rights Reserved Copyright © 2000, Yokogawa Electric Corporation IM 11M12A01-04E 10th Edition : May 19, 2017-00 ii Models and descriptions in this manual are listed below. Models and descriptions in this manual Model Product Name ZR202G Integrated type Oxygen Analyzer Probe protector Dust protector (only for Humidity analyzer) Flow setting unit (for manual calibration use) Automatic Calibration unit Case Assembly for calibration gas cylinder (Part No. E7044KF) Check valve (Part No. K9292DN, K9292DS) Dust filter for the detector (Part No. K9471UA) Dust guard protector (Part No. K9471UC) Standard gas unit ZO21R ZH21B ZA8F ZR20H ZO21S Description in this manual Specification Installation Operation Maintenance ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ CMPL ○ ○ ○ ○ CMPL: Customer Maintenance Parts List This manual consists of twelve chapters. Please refer to the reference chapters for installation, operation and maintenance. Table of Contents Chapter 1. Overview 2. Specifications 3. Installation 4. Piping 5. Wiring 6. Components 7. Startup 8. Detailed Data Setting 9. Calibration 10. Other Functions 11. Inspection and Maintenance 12. Troubleshooting CMPL (parts list) Outline Equipment models and system configuration examples Standard specification, model code (or part number), dimension drawing for each equipment Installation method for each equipment Examples of piping in three standard system configurations Wiring procedures such as “Power supply wiring”, “output signal wiring” or others Major parts and function are described in this manual Basic procedure to start operation of EXAxt ZR. Chapter 7 enables you to operate the equipment immediately. Details of key operations and displays Describes the calibration procedure required in the course of operation. Other functions described How to conduct maintenance of EXAxt ZR and procedures for replacement of deteriorated parts This chapter describes measures to be taken when an abnormal condition occurs. User replaceable parts list Relates to Installation Operation Maintenance B C B A B B A C A C A C C B B A C B C B C B C B A C A C B A: Read and completely understand before operating the equipment. B: Read before operating the equipment, and refer to it whenever necessary. C: Recommended to read it at least once. IM 11M12A01-04E 10th Edition : May 19, 2017-00 iii n For the safe use of this equipment WARNING Be sure not to accidentally drop it. Handle safely to avoid injury. Connect the power supply cord only after confirming that the supply voltage matches the rating of this equipment. In addition, confirm that the power is switched off when connecting power supply. Some sample gas is dangerous to people. When removing this equipment from the process line for maintenance or other reasons, protect yourself from potential poisoning by using a protective mask or ventilating the area well. CAUTION The cell (sensor) at the tip of the probe is made of ceramic (zirconia element). Do not drop the equipment or subject it to pressure stress. • Do NOT allow the sensor (probe tip) to make contact with anything when installing the analyzer. • Avoid any water dropping directly on the probe (sensor) of the analyzer when installing it. • Check the calibration gas piping before introducing the calibration gas to ensure that there is no leakage of the gas. If there is any leakage of the gas, the moisture drawn from the sample gas may damage the sensor. • The probe (especially at the tip) becomes very hot. Be sure to handle it with gloves. n NOTICE l Specification check When the instrument arrives, unpack the package with care and check that the instrument has not been damaged during transportation. In addition, please check that the specification matches the order, and required accessories are not missing. Specifications can be checked by the model codes on the nameplate. Refer to Chapter 2 Specifications for the list of model codes. l Details on operation parameters When the EXAxt ZR Separate type Oxygen Analyzer arrives at the user site, it will operate based on the operation parameters (initial data) set before shipping from the factory. Ensure that the initial data is suitable for the operation conditions before conducting analysis. Where necessary, set the instrument parameters for appropriate operation. For details of setting data, refer to chapters 7 to 10. When user changes the operation parameter, it is recommended to note down the changed setting data. IM 11M12A01-04E 10th Edition : May 19, 2017-00 iv u Safety Precautions n Safety, Protection, and Modification of the Product • In order to protect the system controlled by the product and the product itself and ensure safe operation, observe the safety precautions described in this user’s manual. We assume no liability for safety if users fail to observe these instructions when operating the product. • If this instrument is used in a manner not specified in this user’s manual, the protection provided by this instrument may be impaired. • If any protection or safety circuit is required for the system controlled by the product or for the product itself, prepare it separately. • Be sure to use the spare parts approved by Yokogawa Electric Corporation (hereafter simply referred to as YOKOGAWA) when replacing parts or consumables. • Modification of the product is strictly prohibited. • The following safety symbols are used on the product as well as in this manual. WARNING This symbol indicates that an operator must follow the instructions laid out in this manual in order to avoid the risks, for the human body, of injury, electric shock, or fatalities. The manual describes what special care the operator must take to avoid such risks. CAUTION This symbol indicates that the operator must refer to the instructions in this manual in order to prevent the instrument (hardware) or software from being damaged, or a system failure from occurring. CAUTION This symbol gives information essential for understanding the operations and functions. NOTE This symbol indicates information that complements the present topic. This symbol indicates Protective Ground Terminal. This symbol indicates Function Ground Terminal. Do not use this terminal as the protective ground terminal. n Warning and Disclaimer The product is provided on an “as is” basis. YOKOGAWA shall have neither liability nor responsibility to any person or entity with respect to any direct or indirect loss or damage arising from using the product or any defect of the product that YOKOGAWA can not predict in advance. IM 11M12A01-04E 10th Edition : May 19, 2017-00 v n Notes on Handling User’s Manuals • Please hand over the user’s manuals to your end users so that they can keep the user’s manuals on hand for convenient reference. • Please read the information thoroughly before using the product. • The purpose of these user’s manuals is not to warrant that the product is well suited to any particular purpose but rather to describe the functional details of the product. • No part of the user’s manuals may be transferred or reproduced without prior written consent from YOKOGAWA. • YOKOGAWA reserves the right to make improvements in the user’s manuals and product at any time, without notice or obligation. • If you have any questions, or you find mistakes or omissions in the user’s manuals, please contact our sales representative or your local distributor. n Drawing Conventions Some drawings may be partially emphasized, simplified, or omitted, for the convenience of description. Some screen images depicted in the user’s manual may have different display positions or character types (e.g., the upper / lower case). Also note that some of the images contained in this user’s manual are display examples. In the figure listed in this manual, the example of the oxygen analyzer is shown mainly. In the case of the humidity analyzer, unit indication may be different. Please read it appropriately. n Product Disposal The instrument should be disposed of in accordance with local and national legislation/regulations. n Trademark Acknowledgments • All other company and product names mentioned in this user’s manual are trademarks or registered trademarks of their respective companies. • We do not use TM or ® mark to indicate those trademarks or registered trademarks in this user’s manual. IM 11M12A01-04E 10th Edition : May 19, 2017-00 vi n Special descriptions in this manual This manual indicates operation keys, displays and drawings on the product as follows: l Operation keys, displays on the panel Enclosed in [ ]. (Ex. “MODE” key) (Ex. message display → “BASE”) (Ex. data display “102” lit, “102” flashing) → l Drawing for flashing Indicated by gray characters (Flashing) (lit) l Displays on the LCD display panel Alphanumerics LED Display Alphanumerics LED Display Alphanumerics A N 0 B O 1 C P 2 D Q 3 E R 4 F S 5 G T 6 H U 7 I V 8 J W 9 K Y L Z LED Display M IM 11M12A01-04E 10th Edition : May 19, 2017-00 vii CE marking products u n Authorised Representative in EEA The Authorised Representative for this product in EEA is Yokogawa Europe B.V. (Euroweg 2, 3825 HD Amersfoort, The Netherlands). n Identification Tag This manual and the identification tag attached on packing box are essential parts of the product. Keep them together in a safe place for future reference. n Users This product is designed to be used by a person with specialized knowledge. n How to dispose the batteries: This is an explanation about the new EU Battery Directive (DIRECTIVE 2006/66/EC). This directive is only valid in the EU. Batteries are included in this product. Batteries incorporated into this product cannot be removed by yourself. Dispose them together with this product. When you dispose this product in the EU, contact your local Yokogawa Europe B.V.office. Do not dispose them as domestic household waste. Battery type: Manganese dioxide lithium battery Notice: The symbol (see above) means they shall be sorted out and collected as ordained in ANNEX II in DIRECTIVE 2006/66/EC. IM 11M12A01-04E 10th Edition : May 19, 2017-00 Blank Page Toc-1 Model ZR202G Integrated type Oxygen/Humidity Analyzer IM 11M12A01-04E 10th Edition CONTENTS u Introduction.....................................................................................................i u Safety Precautions.......................................................................................iv u CE marking products..................................................................................vii 1. Overview..................................................................................................... 1-1 1.1 1.2 2. 1.1.1 System 1............................................................................................. 1-1 1.1.2 System 2............................................................................................. 1-2 1.1.3 System 3............................................................................................. 1-3 < EXAxt ZR > System Components................................................................. 1-4 1.2.1 System Components.......................................................................... 1-4 1.2.2 Oxygen/Humidity Analyzer and Accessories...................................... 1-4 Specifications............................................................................................ 2-1 2.1 2.2 3. < EXAxt ZR > System Configuration................................................................ 1-1 General Specifications...................................................................................... 2-1 2.1.1 Standard Specifications...................................................................... 2-1 2.1.2 ZR202G Integrated type Zirconia Oxygen Analyzer........................... 2-2 2.1.3 ZO21R Probe Protector...................................................................... 2-9 2.1.4 ZH21B Dust Protector....................................................................... 2-10 ZA8F Flow Setting Unit and ZR20H Automatic Calibration Unit................. 2-11 2.2.1 ZA8F Flow Setting Unit..................................................................... 2-11 2.2.2 ZR20H Automatic Calibration Unit.................................................... 2-14 2.3 ZO21S Standard Gas Unit............................................................................... 2-16 2.4 Other Equipment.............................................................................................. 2-17 2.4.1 Dust Filter for Oxygen Analyzer (part no. K9471UA)........................ 2-17 2.4.2 Dust Guard Protector (K9471UC)..................................................... 2-17 2.4.3 Stop Valve (part no. L9852CB or G7016XH).................................... 2-18 2.4.4 Check Valve (part no. K9292DN or K9292DS)................................. 2-18 2.4.5 Air Set................................................................................................ 2-19 2.4.6 Zero Gas Cylinder (part no. G7001ZC)............................................ 2-20 2.4.7 Pressure Regulator (G7013XF or G7014XF) for Gas Cylinder........ 2-21 2.4.8 Case Assembly (E7044KF) for Calibration gas Cylinder.................. 2-21 2.4.9 ZR202A Heater Assembly................................................................ 2-22 Installation.................................................................................................. 3-1 3.1 Installation of ZR202G Zirconia Oxygen/Humidity Analyzer........................ 3-1 IM 11M12A01-04E 10th Edition : May 19, 2017-00 Toc-2 3.1.1 Probe Insertion Hole........................................................................... 3-1 3.1.2 Installation of the Probe...................................................................... 3-2 3.1.3 Installation of the Dust Filter (K9471UA), Dust Guard Protector (K9471UC) Probe Protector (ZO21R)................................................ 3-2 3.1.4 Installation of ZH21B Dust Protector.................................................. 3-4 3.2 Installation of ZA8F Flow Setting Unit............................................................. 3-5 3.3 Installation of ZR20H Automatic Calibration Unit.......................................... 3-6 3.4 Installation of the Case Assembly (E7044KF) for Calibration Gas Cylinder.3-7 3.5 Insulation Resistance Test................................................................................ 3-8 4. Piping.......................................................................................................... 4-1 4.1 4.2 Piping for System 1............................................................................................ 4-1 4.1.1 Piping Parts for System 1................................................................... 4-2 4.1.2 Piping for the Calibration Gas............................................................. 4-2 4.1.3 Piping for the Reference Gas............................................................. 4-2 Piping for System 2............................................................................................ 4-2 4.2.1 Piping Parts for System 2................................................................... 4-3 4.2.2 Piping for the Calibration Gas............................................................. 4-3 4.2.3 Piping for the Reference Gas............................................................. 4-4 4.3 Piping for System 3............................................................................................ 4-4 4.4 Piping for the Oxygen Analyzer with Pressure Compensation.................... 4-6 4.4.1 Piping Parts for Oxygen Analyzer with Pressure Compensation....... 4-8 4.4.2 Piping for the Calibration Gas............................................................. 4-8 4.4.3 Piping for the Reference Gas............................................................. 4-8 5. Wiring.......................................................................................................... 5-1 5.1 General................................................................................................................ 5-1 5.1.1 Terminals for the External Wiring........................................................ 5-2 5.1.2 Wiring.................................................................................................. 5-2 5.1.3 5.2 5.3 5.4 5.5 6. Mounting of Cable Gland.................................................................... 5-3 Wiring for Analog Output.................................................................................. 5-3 5.2.1 Cable Specifications........................................................................... 5-4 5.2.2 Wiring Procedure................................................................................ 5-4 Wiring Power and Ground Terminals.............................................................. 5-4 5.3.1 Wiring for Power Line.......................................................................... 5-4 5.3.2 Wiring for Ground Terminals............................................................... 5-5 Wiring for Contact Output................................................................................. 5-5 5.4.1 Cable Specifications........................................................................... 5-5 5.4.2 Wiring Procedure................................................................................ 5-5 Wiring for Contact Input.................................................................................... 5-5 5.5.1 Cable Specifications........................................................................... 5-6 5.5.2 Wiring Procedure................................................................................ 5-6 Components.............................................................................................. 6-1 6.1 ZR202G Zirconia Oxygen/Humisity Analyzer................................................. 6-1 IM 11M12A01-04E 10th Edition : May 19, 2017-00 Toc-3 6.2 ZA8F Flow Setting Unit, ZR20H Automatic Calibration Unit......................... 6-2 7. Startup........................................................................................................ 7-1 7.1 Checking Piping and Wiring Connections...................................................... 7-1 7.2 Valve Setup......................................................................................................... 7-1 7.3 Supplying Power to Converter......................................................................... 7-2 7.4 Operation of Infrared Switch............................................................................ 7-2 7.4.1 Display and Switches.......................................................................... 7-2 7.4.2 Display Configuration.......................................................................... 7-4 7.4.3 Entering Parameter Code Selection Display...................................... 7-5 7.4.4 Selecting Parameter Codes................................................................ 7-6 7.4.5 Changing Set Values.......................................................................... 7-6 7.5 Confirmation of Equipment Type Setting........................................................ 7-8 7.6 Selection of Measurement Gas........................................................................ 7-9 7.7 Output Range Setting........................................................................................ 7-9 7.8 7.7.1 Oxygen Analyzer -Minimum Current (4 mA) and Maximum Current (20 mA) Settings....................................................................................... 7-9 7.7.2 Output Range Setting....................................................................... 7-11 7.7.3 Humidity Analyzer -Minimum Current (4 mA) and Maximum Current (20 mA) Settings..................................................................................... 7-11 Setting Display Item......................................................................................... 7-12 7.8.1 Oxygen Analyzer - Setting Display Item........................................... 7-12 7.8.2 Humidity Analyzer - Setting Display Item.......................................... 7-13 7.9 Checking Current Loop................................................................................... 7-13 7.10 Checking Contact I/O....................................................................................... 7-14 7.10.1 Contact Output Check...................................................................... 7-14 7.10.2 Checking Calibration Contact Output............................................... 7-15 7.10.3 Checking Input Contacts................................................................... 7-16 7.11 Calibration........................................................................................................ 7-16 8. 7.11.1 Calibration Setup.............................................................................. 7-16 7.11.2 Manual Calibration............................................................................ 7-19 Detailed Data Setting................................................................................ 8-1 8.1 8.2 Current Output Setting...................................................................................... 8-1 8.1.1 Oxygen Analyzer_Current Output Setting.......................................... 8-1 8.1.2 Oxygen Analyzer_Analog Output Setting........................................... 8-1 8.1.3 Setting Minimum Oxygen Concentration (at 4 mA) and Maximum Oxygen Concentration (at 20 mA).................................................................... 8-2 8.1.4 Minimum and Maximum Settings Corresponding to 4 mA and 20 mA.8-2 8.1.5 Input Ranges....................................................................................... 8-2 8.1.6 Entering Output Damping Constants.................................................. 8-5 8.1.7 Selection of Output Mode................................................................... 8-5 8.1.8 Default Values..................................................................................... 8-5 Output Hold Setting........................................................................................... 8-5 8.2.1 Definition of Equipment Status........................................................... 8-6 IM 11M12A01-04E 10th Edition : May 19, 2017-00 Toc-4 8.3 8.4 8.5 8.6 8.2.2 Preference Order of Output Hold Value.............................................. 8-7 8.2.3 Output Hold Setting............................................................................. 8-7 8.2.4 Default Values..................................................................................... 8-7 Setting Alarms.................................................................................................... 8-8 8.3.1 Alarm Values....................................................................................... 8-8 8.3.2 Alarm Output Actions.......................................................................... 8-8 8.3.3 Alarm Setting...................................................................................... 8-9 8.3.4 Default Values................................................................................... 8-10 Output Contact Setup...................................................................................... 8-10 8.4.1 Output Contact.................................................................................. 8-10 8.4.2 Setting Output Contact ..................................................................... 8-11 8.4.3 Default Values................................................................................... 8-12 Input Contact Settings..................................................................................... 8-12 8.5.1 Input Contact Functions.................................................................... 8-12 8.5.2 Setting Input Contact........................................................................ 8-13 8.5.3 Default Values................................................................................... 8-13 Other Settings.................................................................................................. 8-13 8.6.1 Setting the Date-and-Time................................................................ 8-13 8.6.2 Setting Periods over which Average Values are Calculated and Periods over which Maximum and Minimum Values Are Monitored............. 8-14 8.6.3 Setting Fuels..................................................................................... 8-15 8.6.4 Setting Measurement Gas Temperature and Pressure.................... 8-19 8.6.5 Setting Purging................................................................................. 8-20 9. Calibration.................................................................................................. 9-1 9.1 Calibration Briefs............................................................................................... 9-1 9.1.1 Principle of Measurement with a zirconia oxygen analyzer............... 9-1 9.1.2 Measurement Principle of Zirconia Humidity Analyzer....................... 9-2 9.1.3 Calibration Gas................................................................................... 9-4 9.1.4 Compensation..................................................................................... 9-4 9.1.5 9.2 Characteristic Data from a Sensor Measured During Calibration...... 9-5 Calibration Procedures..................................................................................... 9-6 9.2.1 Mode................................................................................................... 9-6 9.2.2 Calibration Procedure......................................................................... 9-6 9.2.3 Zero gas Concentration...................................................................... 9-7 9.2.4 Span gas Concentration..................................................................... 9-7 9.2.5 Calibration Time.................................................................................. 9-7 9.3 Calibration.......................................................................................................... 9-9 10. 9.3.1 Manual Calibration.............................................................................. 9-9 9.3.2 Semi-automatic Calibration................................................................ 9-9 9.3.3 Automatic Calibration........................................................................ 9-10 Other Functions....................................................................................... 10-1 10.1 Detailed Display............................................................................................... 10-1 IM 11M12A01-04E 10th Edition : May 19, 2017-00 Toc-5 10.1.1 Oxygen Concentration...................................................................... 10-2 10.1.2 Humidity............................................................................................ 10-2 10.1.3 Mixing Ratio...................................................................................... 10-2 10.1.4 Relative Humidity.............................................................................. 10-2 10.1.5 Dew Point.......................................................................................... 10-2 10.1.6 Air Ratio............................................................................................ 10-3 10.1.7 Cell Temperature............................................................................... 10-3 10.1.8 Process Gas Temperature................................................................ 10-3 10.1.9 C. J. Temperature............................................................................. 10-3 10.1.10 Amount of Water Vapor in Exhaust Gas........................................... 10-3 10.1.11 Cell Voltage....................................................................................... 10-4 10.1.12 Thermocouple Voltage...................................................................... 10-4 10.1.13 Cold Junction Voltage....................................................................... 10-4 10.1.14 Current Output.................................................................................. 10-4 10.1.15 Response Time................................................................................. 10-4 10.1.16 Cell’s Internal Resistance................................................................. 10-5 10.1.17 Robustness of a Cell......................................................................... 10-5 10.1.18 Heater On-Time Ratio....................................................................... 10-5 10.1.19 Oxygen Concentration (with time constant), Humidity (with time constant), and Mixing Ratio (with time constant).............................................................. 10-6 10.1.20 Maximum Oxygen Concentration, Humidity, and Mixing Ratio....... 10-6 10.1.21 Minimum Oxygen Concentration, Humidity, and Mixing Ratio......... 10-6 10.1.22 Average Oxygen Concentration, Humidity, and Mixing Ratio.......... 10-6 10.1.23 Span and Zero Correction Ratios..................................................... 10-6 10.1.24 History of Calibration Time................................................................ 10-7 10.1.25 Time.................................................................................................. 10-7 10.1.26 10.2 Operational Data Initialization ....................................................................... 10-7 10.3 Initialization Procedure................................................................................... 10-8 10.4 Reset.................................................................................................................. 10-8 10.5 Handling of the ZO21S Standard Gas Unit..................................................10-21 10.6 11. Software Revision............................................................................. 10-7 10.5.1 Standard Gas Unit Component Identification.................................10-21 10.5.2 Installing Gas Cylinders.................................................................. 10-21 10.5.3 Calibration Gas Flow.......................................................................10-22 Methods of Operating Valves in the ZA8F Flow Setting Unit....................10-23 10.6.1 Preparation Before Calibration....................................................... 10-24 10.6.2 Operating the Span Gas Flow Setting Valve.................................. 10-24 10.6.3 Operating the Zero Gas Flow Setting Valve...................................10-24 10.6.4 Treatment After Calibration.............................................................10-24 Inspection and Maintenance.................................................................. 11-1 11.1 Inspection and Maintenance of the Detector................................................ 11-1 11.1.1 Cleaning the Calibration Gas Tube................................................... 11-1 IM 11M12A01-04E 10th Edition : May 19, 2017-00 Toc-6 12. 11.1.2 Replacing the Sensor Assembly....................................................... 11-2 11.1.3 Replacement of the Heater Assembly.............................................. 11-4 11.1.4 Replacement of Dust Filter............................................................... 11-6 11.1.5 Replacement of O-ring...................................................................... 11-6 11.1.6 Stopping and Re-starting Operation................................................. 11-7 11.2 Inspection and Maintenance of the Converter............................................. 11-7 11.3 Replacement of Flowmeter for ZR20H Automatic Calibration Unit ........... 11-9 Troubleshooting...................................................................................... 12-1 12.1 12.2 12.3 Displays and Measures to Take When Errors Occur................................... 12-1 12.1.1 What is an Error?.............................................................................. 12-1 12.1.2 Measures to Take When an Error Occurs........................................ 12-2 Displays and Measures to Take When Alarms are Generated.................... 12-4 12.2.1 What is an Alarm?............................................................................. 12-4 12.2.2 Measures Taken When Alarms are Generated................................ 12-4 Measures When Measured Value Shows an Error....................................... 12-8 12.3.1 Measured Value Higher (Lower for Humidity Analyzer) Than True Value... 12-8 12.3.2 Measured Value Lower (Higher for Humidity Analyzer) Than True Value... 12-9 12.3.3 Measurements Sometimes Show Abnormal Values......................12-10 Customer Maintenance Parts List.......................................CMPL 11M12A01-04E Customer Maintenance Parts List.......................................CMPL 11M12A01-12E Customer Maintenance Parts List...........................................CMPL 11M3D1-01E Revision Information................................................................................................i IM 11M12A01-04E 10th Edition : May 19, 2017-00 <1. Overview> 1-1 1. Overview The EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer is used to monitor and control the oxygen concentration in combustion gases, in boilers and industrial furnaces, for wide application in industries which consume considerable energy-such as steel, electric power, oil and petrochemical, ceramics, pulp and paper, food, or textiles, as well as incinerators and medium/small boilers. It can help conserve energy in these industries. The EXAxt ZR also contributes to preservation of the earth’s environment in preventing global warming and air pollution by controlling complete combustion to reduce CO2, SOx and NOx. The EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer integrates both probe and converter. The analyzers need not use a sampling device, and allow direct installation of the probe in the wall of a flue or furnace to measure the concentration of oxygen in the stack gas of the temperature up to 700°C. The EXAxt ZR Integrated-type Zirconia High-temperature Humidity Analyzer integrates the detector and the converter in one unit. This analyzer can measure humidity of hot air continuously, so can be used to measure humidity of air in driers which are heated by steam or electricity. It can also be used in a variety of manufacturing applications with humidifiers, as well as with driers, for humidity measurement and control. It can help improve productivity in these application fields. The probe uses a high-reliability Zirconia sensor and a heater assembly that can be replaced on site. The analyzer is equipped with three infrared switches, which enable the user to operate the equipment without opening the cover on site. Analyzer calibration can also be fully automated and the automatic calibration unit is provided. Choose the equipment which best suits your needs so that an optimal combustion control system can be obtained. Some examples of typical system configuration are illustrated below: 1.1 < EXAxt ZR > System Configuration The system configuration should be determined by the conditions; e.g. whether the calibration is to be automated, and whether flammable gas is present and requires safety precautions. The system configuration can be classified into three basic patterns as follows: 1.1.1 System 1 This is the simplest system consisting of an integrated type analyzer. This system can be implemented for monitoring oxygen concentration in the combustion gases boiler, and can be implemented for monitoring humidity in a production process such as food production. No piping is required for the reference gas (air) which is fed in at the installation site. The ZO21S standard gas unit is used for calibration. Zero gas from this unit and span gas (air) is sent to the probe through a tube which is connected during calibration. IM 11M12A01-04E 10th Edition : May 19, 2017-00 1-2 <1. Overview> ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer Stop valve to 240 V AC ~ 100 Contact input Analog output, contact output Digital output (HART) Calibration gas ~ 100/110/115 200/220/240 V AC ZO21S Standard gas unit Figure1.1 F1.1E.ai Example of System 1 NOTE • As this system uses ambient air for the reference gas, measuring accuracy will be affected by the installation location. • A stop valve should be connected to the calibration gas inlet of the equipment. The valve should be fully closed unless calibration is in progress. 1.1.2 System 2 This system is for monitoring and controlling oxygen concentration in the combustion gases of a large-size boiler or heating furnace. Instrument air (clean and dry air of oxygen concentration 21%) is used as the reference gas and the span gas for calibration. Zero gas is fed from a cylinder during calibration. In case of humidity analyzer, this system is for accurate monitoring and controlling humidity when the installation environment is polluted with gases other than the air. Instrument air (clean and dry air of oxygen concentration 21%) is used for the reference gas and the span gas for calibration. The gas flow is controlled by the ZA8F flow setting unit (for manual valve operation). ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer Stop valve or Check valve ~ Reference gas 100 to 240 V AC Contact input Analog output, contact output Digital output (HART) Flowmeter Needle valve Air Set Calibration gas Instrument air Span gas(Same as Zero gas calibration) ZA8F flow setting unit Calibration gas pressure regulator Zero gas cylinder Calibration gas unit case Figure1.2 F1.2E.ai Example of System 2 IM 11M12A01-04E 10th Edition : May 19, 2017-00 1-3 <1. Overview> 1.1.3 System 3 This example, System 3, represents typical applications in large boilers and heating furnaces, where is a need to monitor and control oxygen concentration. The reference gas and calibrationtime span gas are (clean, dry) instrument air. Zero gas is supplied from a gas cylinder. System 3 uses the ZR20H automatic calibration unit, with auto-switching of the calibration gas. A “combustible gas detected” contact input turns off power to the heater. There’s also contact output from the converter that can be used to operate a purge gas valve to supply air to the sensor. *2 ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer with automatic calibration unit (ZR202G-□-□-□-A-□-□-□-□-A) ~ Automatic calibration unit ZR20H 100 to 240 V AC *1 Contact input Analog output, contact output Digital output (HART) Air Set Reference gas Instrument air Span gas Calibration gas (Zero) *3 Calibration gas pressure regulator Zero gas cylinder Calibration gas unit case Note: The installation temperature limits range for integrated type analyzer is -20 to 55°C. *1 *2 *3 F1.3E.ai Shield cable: Use shielded signal cables, and connect the shields to the FG terminal of the converter. Select the desired probe from the Probe Configuration table on page 1-4. When a zirconia oxygen analyzer is used, 100% N2 gas cannot be used as the zero gas. Use approx. 1 vol% O2 gas (N2-based). Figure1.3 Example of System 3 IM 11M12A01-04E 10th Edition : May 19, 2017-00 1.2 1-4 <1. Overview> < EXAxt ZR > System Components 1.2.1 System Components Separate type Oxygen Humidity System config. System Components Analyzer Analyzer Ex.1 Ex.2 Ex.3 Model ZR202G Integrated type Zirconia Oxygen Analyzers A A A A A Model ZO21R Probe Protector for Zirconia Oxygen Analyzers B B B B K9471UA Dust Filter for Oxygen Analyzer B B B B K9471UC Dust Guard Protector B B B B B ZH21B Dust protector (only for Humidity Analyzer) B B B B Model ZO21S Standard Gas Unit A B B Model ZA8F Flow Setting Unit for manual calibration A B B Model ZR20H Automatic Calibration Unit for Integrated type Analyzer A B B L9852CB, G7016XH Stop Valve for Calibration gas line A (A) B B K9292DN,K9292DS Check Valve for Calibration gas line (A) B B G7003XF/K9473XK, G7004XF/K9473XG Air Set A A B B G7001ZC Zero gas Cylinder A A B B G7013XF, G7014XF Pressure Reducing Valve for Gas Cylinder A A B B E7044KF Case Assembly for Calibration gas Cylinder A A B B Model ZR202A Heater Assembly (Spare Parts for ZR202G) B B B B B A: Items required for the above system example B: To be selected depending on each application. For details, refer to corresponding chapter. (A): Select either 1.2.2 Oxygen/Humidity Analyzer and Accessories Sample gas temperature 0 to 700°C Mounting Insertion length Horizontal to vertical Vertical Horizontal to vertical General-use Probe 0.4 to 2m 2.5 m or more 3m or less Application ZR202G • Boiler • Heating furnace Dust protector (ZH21B) Only ZR22G-040 Humidity analyzer use Probe Protector Detector (ZO21R) (ZR202G) Gas Flow • For pulverized coal boiler with gas flow velocity 10 m/sec or more • Cement Kiln Sample inlet Horizontal to vertical 0.4 to 2m Vertical 2.5 m or more Dust Filter • Black liquid recovery boiler (K9471UA) Detector(ZR202G) • Cement Kiln or Dust Guard + Protector (K9471UC) F1.4E.ai IM 11M12A01-04E 10th Edition : May 19, 2017-00 2. <2. Specifications> 2-1 Specifications This chapter describes the specifications for the following: ZR202G General-use Integrated type Zirconia Oxygen Analyzer (See Section 2.1.2) ZO21R-L Probe protector (See Section 2.1.3) ZH21B Dust protector (See Section 2.1.4) ZA8F Flow setting unit (See Section 2.2.1) ZR20H Automatic calibration unit (See Section 2.2.2) ZO21S Standard gas unit (See Section 2.3) K9471UA Dust Filter for Oxygen Analyzer (See Section 2.4) 2.1 General Specifications 2.1.1 Standard Specifications Measured Object: Oxygen concentration in combustion exhaust gas and mixed gas (excluding inflammable gases). May not be applicable corrosive gas such as ammonia, chlorine is present-check with YOKOGAWA.) (In case of Humidity Analyzer, Water vapor (in vol%) in mixed gases (air and water vapor)) Measured System: Zirconia system Measurement Range: 0.01 to 100 vol%O2 (In case of Humidity Analyzer, 0 to 100 vol% H2O or 0 to 1.000 kg/kg) Output Signal: 4 to 20 mA DC (maximum load resistance 550 Ω) Setting Range: Any setting in the range of 0 to 5 through 0 to 100 vol%O2 (in 1 vol%O2), or partial range In case of Humidity Analyzer, Moisture quantity: 0 to 25 through 0 to 100 vol% H2O (in 1 vol% H2O), or partial range. Mixture ratio; 0 to 0.2 through 0 to 1.000 kg/kg (in 0.001 kg/kg), or partial range. Digital Communication (HART): 250 to 550 Ω, depending on number of field devices connected to the loop (multi-drop mode). Note: HART is a registered trademark of the HART Communication Foundation. Display Range: Oxygen concentration; 0 to 100 vol%O2 In case of Humidity Analyzer, Moisture quantity; 0 to 100 vol% H2O, Mixture ratio; 0 to 1 kg/kg, Relative humidity; 0 to 100% RH (Note), Dew point; -40 to 370°C (Note) Warm-up Time: Note: These values are affected by temperature and absolute pressure, So accurate temperature and pressure values must be inputted to the converter. Approx. 20 min. These characteristics are calculated by oxygen concentration measured in air which include water vapor. Repeatability: (Excluding the case where the reference gas is by natural convection) ±0.5% Maximum value of set range; less than 0 to 25 vol%O2 range ±1% Maximum value of set range; 0 to 25 vol%O2 or more and up to 0 to 100 vol%O2 range In case of Humidity Analyzer, ± 1 vol% H2O; (Sample gas pressure 2 kPa or less) IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-2 Linearity: (Excluding standard gas tolerance) (Excluding the case where the reference gas is by natural convection) (Use oxygen of known concentration (within the measuring range) as the zero and span calibration gases.) ±1% Maximum value of set range; less than 0 to 25 vol%O2 range (Sample gas pressure: within ±4.9 kPa) ±3% Maximum value of set range; 0 to 25 vol%O2 or more and less than 0 to 50 vol%O2 range (Sample gas pressure: within ±0.49 kPa) ±5% Maximum value of set range; 0 to 50 vol%O2 or more and up to 0 to 100 vol%O2 range (Sample gas pressure: within ±0.49 kPa) In case of Humidity Analyzer, ± 2 vol% H2O; (Sample gas pressure: within ± 0.49 kPa) ± 3 vol% H2O; (Sample gas pressure: 2 kPa or less) Drift: (Excluding the first two weeks in use) (Excluding the case where the reference gas is by natural convection.) Both zero and span ±2% Maximum value of set range/month In case of Humidity Analyzer, Both zero and span ± 3 vol% H2O/month Response Time: Response of 90% within 5 seconds. (Measured after gas is introduced from calibration gas inlet and analog output start changing.) Installation Altitude: 2000 m or less Category based on IEC 61010: II (Note) Pollution degree based on IEC 61010: 2 (Note) Note: Installation category, called over-voltage category, specifies impulse withstand voltage. Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which may reduce dielectric strength. Degree 2 is the normal indoor environment. Safety and EMC conforming standards the ZR202G Safety: EN 61010-1, EN 61010-2-030, CAN/CSA-C22.2 No. 61010-1, UL Std. No. 61010-1 EMC: EN 61326-1 Class A*, Table 2, EN 61326-2-3, EN 61000-3-2 *: Influence of immunity environment (Criteria A ): ±20% of F. S. RoHS: EN 50581 EMC Regulatory Arrangement in Australia and New Zealand (RCM) EN61326-1 Class A Korea Electromagnetic Conformity Standard CAUTION This instrument is a Class A product, and it is designed for use in the industrial environment. Please use this instrument in the industrial environment only. 2.1.2 ZR202G Integrated type Zirconia Oxygen Analyzer Can be operated in the field without opening the cover using optical switches. Display: 6-digit LCD Switch: Three optical switches Output Signal: 4 to 20 mA DC, one point (maximum load resistance 550 Ω) IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-3 Digital Communication (HART): 250 to 550 Ω, depending on quantity of field devices connected to the loop (multi-drop mode). Contact Output Signal: Two points (one is fail-safe, normally open) Contact Input Signal: Two points Sample Gas Temperature: 0 to 700°C It is necessary to mount the cell using inconel cell-bolts when the temperature is greater than 600°C. High temperature service ― greater than 700°C ― is not available. Sample Gas Pressure: -5 to +250 kPa (When the pressure in the furnace exceeds 3 kPa, it is recommended to use pressure compensated type. When the pressure in the furnace exceeds 5 kPa, pressure compensated type is required.) No pressure fluctuation in the furnace should be allowed. Note: When the detector is used in conjunction with a check valve and the ZA8F Flow Setting Unit, the maximum pressure of sample gas is 150 kPa. When with a check valve and the ZR20H Automatic Calibration Unit, it is 200 kPa. If the pressure of your sample gas exceeds these limits, consult with Yokogawa. Probe Length: 0.4, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0 m Probe Material: SUS 316 (JIS) Ambient Temperature: -20 to +55°C (- 5 to +70°C on the case surface) Storage Temperature: -30 to +70°C Humidity Range: 0 to 95%RH (non-condensing) Power Supply Voltage: Ratings; 100 to 240 V AC Acceptable range; 85 to 264 V AC Power Supply Frequency: Ratings; 50/60 Hz Acceptable range; 45 to 66 Hz Power Consumption: Max. 300 W, approx. 100 W for ordinary use. Reference Gas System: Natural Convection, Instrument Air, or Pressure Compensated Instrument Air System (excluding Natural Convection): Pressure; 200 kPa + the pressure inside the furnace (It is recommended to use air which is dehumidified by cooling to dew point -20°C or less, and dust or oil mist are removed.) Consumption; Approx. 1Nl/min Wetted Material: SUS 316 (JIS), Zirconia, SUS 304 (JIS) (flange), Hastelloy B, (Inconel 600, 601) Construction: Heater and thermocouple replaceable construction. Non explosion-proof JIS C0920 / equivalent to IP44D. Equivalent to NEMA 4X/IP66 (Achieved when the cable entry is completely sealed with a cable gland in the recirculation pressure compensated version.) Gas Connection: Rc1/4 or 1/4NPT(F) Wiring Connection: G1/2, Pg13.5, M20 x 1.5mm, 1/2NPT select one type (4 pieces) Installation: Flange mounting Probe Mounting Angle: Horizontal to vertically downward. When the probe insertion length is 2 m or less, installing at angles from horizontal to vertically downward is available. When the probe insertion length is 2.5m or more, mount vertically downward (within ± 5°), and if installing at angles from horizontal to vertically downward (within ± 5°), use a probe protector. Case: Aluminum alloy Paint Color: Cover; Mint green (Munsell 5.6BG3.3/2.9) Case; Mint green (Munsell 5.6BG3.3/2.9) Finish: Polyurethane corrosion-resistance coating IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-4 Weight: Insertion length of 0.4m: approx. 8 kg (JIS 5K 65) / approx. 13 kg (ANSI 150 4) Insertion length of 1.0m: approx. 10 kg (JIS 5K 65) / approx. 15 kg (ANSI 150 4) Insertion length of 1.5m: approx. 12 kg (JIS 5K 65) / approx. 17 kg (ANSI 150 4) Insertion length of 2.0m: approx. 14 kg (JIS 5K 65) / approx. 19 kg (ANSI 150 4) Insertion length of 3.0m: approx. 17 kg (JIS 5K 65) / approx. 22 kg (ANSI 150 4) Functions (inclused Humidity Analyzer) Display Function: Displays values of the measured oxygen concentration, moisture quantity, mixture ratio, etc. Alarm, Error Display: Displays alarms such as “AL-06” or errors such as “Err-01” when any such status occurs. Calibration Functions: Automatic calibration; Requires the Automatic Calibration Unit. It calibrates automatically at specified intervals. Semi-auto Calibration; Requires the Automatic Calibration Unit. Input calibration start signal by optical switch or contact, then it calibrates automatically afterwards. Manual Calibration; Calibration with opening/closing the valve of calibration gas in operation interactively with the optical switch. Maintenance Functions: Can operate updated data settings in daily operation and checking. Display data settings, calibration data settings, test settings (current output loop check, input/output contact check). Setup Functions: Initial settings suit for the plant conditions when installing the converter. Current output data settings, alarm data settings, contact data settings, other settings. Display and setting content: Display Related Items: Oxygen concentration (vol% O2), output current value (mA), air ratio, moisture quantity (in hot gases) (vol% H2O), mixture ratio(kg/kg), relative humidity(%RH), dew point (°C), Cell temperature (°C ), thermocouple reference junction temperature (°C ), maximum/minimum/average oxygen concentration (vol% O2), maximum/ minimum/average moisture quantity (vol% H2O), maximum/minimum/average mixture ratio (kg/ kg), cell e.m.f. (mV), cell internal resistance (Ω), cell condition (in four grades), heater on-time rate (%), calibration record (ten times), time (year/month/day/hour/minute), output 1, 2 current (mA), cell response time (seconds), Calibration Setting Items: Span gas concentration (vol% O2), zero gas concentration (vol%O2), calibration mode (auto, semi-auto, manual), calibration type and method (zero-span calibration, zero calibration only, span calibration only), stabilization time (min.sec), calibration time (min.sec), calibration interval (day/hour), starting time (year/month/day/hour/minute) Output Related Items: Analog output/output mode selection, output conditions when warmingup/maintenance/calibrating/abnormal, 4 mA/20 mA point oxygen concentration (vol% O2), time constant, preset values when warming-up/ maintenance/calibrating/abnormal, output preset values on abnormal Alarm Related Items: Oxygen concentration high alarm/high-high alarm limit values (vol% O2), oxygen concentration low alarm/low-low alarm limit values (vol% O2), oxygen concentration alarm hysteresis (vol% O2), moisture quantity high alarm/ high-high alarm limit values (vol% H2O), moisture quantity low alarm/ low-low alarm limit values (vol% H2O), mixture ratio high alarm/ high-high alarm limit values (kg/kg), mixture ratio low alarm/ low-low alarm limit values (kg/kg), moisture quantity alarm hysteresis (vol% H2O), mixture ratio alarm hysteresis (kg/kg), oxygen concentration/ moisture quantity/mixture ratio alarm detection,alarm delay (seconds) IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-5 Contact Related Items: Selection of contact input 1 and 2, selection of contact output 1 and 2 (abnormal, high-high alarm, high alarm, low alarm, low-low alarm, maintenance, calibrating, range switching, warming-up, calibration gas pressure decrease, flameout gas detection (answer-back of contact input) Converter Output: One mA analog output point (4 to 20 mA DC (maximum load resistance of 550Ω)) with mA digital output point (HART) (minimum load resistance of 250Ω). Oxygen analyzer; Range; Any setting between 0 to 5 through 0 to 100 vol% O2 in 1 vol% O2, and partial range is available (Maximum range value/ minimum range value 1.3 or more) For the log output, the minimum range value is fixed at 0.1 vol% O2. 4 to 20 mA DC linear or log can be selected. Input/output isolation. Humidity analyzer; Range; Any setting between 0 to 5 through 0 to 100 vol% O2 in 1 vol% O2, and partial range is available (Maximum range value/ minimum range value 1.3 or more) For the log output, the minimum range value is fixed at 0.1 vol% O2. 4 to 20 mA DC linear or log can be selected. Input/output isolation. Output damping; 0 to 255 seconds. Hold/non-hold selection, preset value setting possible with hold. Contact Output: Two points, contact capacity 30V DC 3A, 250V AC 3A (resistive load) One of the output points can be selected to ether normally energized or normally de-energized status. Delayed functions (0 to 255 seconds) and hysteresis function (0 to 9.9 vol% O2) can be added to high/low alarms. The following functions are programmable for contact outputs. (1) Abnormal, (2) High-high alarm, (3) High alarm, (4) Low-low alarm, (5) Low alarm, (6) Maintenance, (7) Calibration, (8) Range switching answer-back, (9) Warm-up, (10) Calibration gas pressure decrease (answer-back of contact input), (11) Flameout gas detection (answerback of contact input). Contact Input: Two points, voltage-free contacts The following functions are programmable for contact inputs: (1) Calibration gas pressure decrease alarm, (2) Range switching (switched range is fixed), (3) External calibration start, (4) Process alarm (if this signal is received, the heater power turns off) Contact capacity: Off-state leakage current: 3 mA or less Self-diagnosis: Abnormal cell, abnormal cell temperature (low/high), abnormal calibration, A/D converter abnormal, digital circuit abnormal Calibration: Method; zero/span calibration Calibration mode; Auto, semi-auto and manual (All are operated using optical switches). Either zero or span can be skipped. Zero calibration gas concentration setting range; 0.3 to 100 vol% O2 (minimum setting: 0.01 vol% O2). Span calibration gas concentration setting range; 4.5 to 100 vol% O2 (minimum setting: 0.01 vol% O2). Use nitrogen-balanced mixed gas containing 0 to 10 vol% O2 scale of oxygen for standard zero gas and 80 to 100 vol% O2 scale of oxygen for standard span gas. Calibration interval; date/time setting: maximum 255 days IM 11M12A01-04E 10th Edition : May 19, 2017-00 2-6 <2. Specifications> l Model and Codes Style : S1 Model Suffix code ZR202G - - - - - - - - - - - - - - - - - - - - - - - - - - - Length -040 -070 -100 -150 -200 -250 -300 Wetted -S material -C Flange -A (*2) -B -C -E -F -G -K -L -M -P -R -S -W Auto Calibration -N -A -B Reference gas -C -E -P Gas Thread -R -T Connection box thread -P -G -M -T Instruction manual -J -E -C — -A Options Valves Filter Tag plates NAMUR NE43 compliant Option code ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------/C /HS /CV /SV /H /F1 /F2 /SCT /PT /C2 /C3 *1 *2 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 Description Integrated type Zirconia Oxygen/ Humidity Analyzer 0.4 m 0.7 m 1.0 m 1.5 m 2.0 m 2.5 m (*1) 3.0 m (*1) Stainless steel (SUS316) Stainless steel with Inconel calibration gas tube ANSI Class 150 2 RF SUS304 (JIS) ANSI Class 150 3 RF SUS304 (JIS) ANSI Class 150 4 RF SUS304 (JIS) DIN PN10 DN50 A SUS304 (JIS) DIN PN10 DN80 A SUS304 (JIS) DIN PN10 DN100 A SUS304 (JIS) JIS 5K 65 FF SUS304 (JIS) JIS 10K 65 FF SUS304 (JIS) JIS 10K 80 FF SUS304 (JIS) JIS 10K 100 FF SUS304 (JIS) JPI Class 150 4 RF SUS304 (JIS) JPI Class 150 3 RF SUS304 (JIS) Westinghouse (*10) Not required Horizontal mounting (*8) Vertical mounting (*8) Natural convection External connection (Instrument air) (*11) Pressure compensated (*11) Rc1/4 1/4NPT (Female) G1/2 Pg13.5 M20 x1.5 mm 1/2NPT Japanese English Chinese Always -A Inconel bolt (*3) Set for Humidity Analyzer (*4) Check valve (*5) Stop valve (*5) Hood (*9) Dust Filter (*6) Dust Guard Protector (*6) Stainless steel tag plate (*7) Printed tag plate (*7) Failure alarm down-scale: Output status at CPU failure and hardware error is 3.6 mA or less (*12) Failure alarm up-scale: Output status at CPU failure and hardware error is 21.0 mA or more (*12) For the horizontally installed probe whose insertion length is 2.5 m or more, use the Probe Protector. Be sure to specify ZO21R-L-200- . Specify the flange suffix code either -C or -K. The thickness of the flange depends on its dimensions. Inconel probe bolts and U shape pipe are used. Use this option for high temperature use (ranging from 600 to 700°C). For humidity measurements, be sure to specify /HS options. Pressure compensation of reference gas can not be selected. Specify either /CV or /SV option code. Not used with the high temperature humidity analyzer. Specify either /SCT or /PT option code. No need to specify the option codes, /CV and /SV, since the check valves are provided with the Automatic Calibration Unit. Automatic calibration cannot be used when natural convection is selected as reference air. Sun shield hood is still effective even if scratched. Hood is necessary for outdoor installation out of sun shield roof. Recommended if sample gas contains corrosive gas like chlorine. Piping for reference gas must be installed to supply reference gas constantly at a specifi ed fl ow rate. Output signal limits: 3.8 to 20.5 mA. Specify either /C2 or /C3 option code. □ IM 11M12A01-04E 10th Edition : May 19, 2017-00 2-7 <2. Specifications> l EXTERNAL DIMENSIONS Model ZR202G Integrated type Zirconia Oxygen/Humidity Analyzers L Ø123 Display side Rc1/4 or 1/4NPT Reference gas inlet 122 L= 0.4, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0 (m) Unit: mm 338 to 351 t 125 48.5 25 Ø50.8 153 to 164 4-G1/2,2-1/2NPT etc. Cable connection port 49 252 to 265 Rc1/4 or 1/4NPT Calibration gas inlet Terminal side 170 C ØA ØB Flange Flange C A 152.4 190.5 228.6 165 200 220 155 175 185 210 229 190 155 Flange ANSI Class 150 2 RF SUS304 ANSI Class 150 3 RF SUS304 ANSI Class 150 4 RF SUS304 DIN PN10 DN50 A SUS304 DIN PN10 DN80 A SUS304 DIN PN10 DN100 A SUS304 JIS 5K 65 FF SUS304 JIS 10K 65 FF SUS304 JIS 10K 80 FF SUS304 JIS 10K 100 FF SUS304 JPI Class 150 4 RF SUS304 JPI Class 150 3 RF SUS304 Westinghouse B C 120.6 4 - Ø19 152.4 4 - Ø19 190.5 8 - Ø19 125 4 - Ø18 160 8 - Ø18 180 8 - Ø18 130 4 - Ø15 140 4 - Ø19 150 8 - Ø19 175 8 - Ø19 190.5 8 - Ø19 152.4 4 - Ø19 127 4 - Ø11.5 t 19 24 24 18 20 20 14 18 18 18 24 24 14 ØA ØB Flange F11_01.ai l Standard Accessories Item Fuse Allen wrench Parts. No. A1113EF L9827AB Q'ty 1 1 Description 3.15 A For lock screw IM 11M12A01-04E 10th Edition : May 19, 2017-00 2-8 <2. Specifications> Model ZR202G...-P Integrated type Zirconia Oxygen/Humidity Analyzer with pressure compensation Unit: mm L 342 ± 4 t L= 0.4, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0 (m) Ø123 Display side 122 Rc1/4 or 1/4NPT Reference gas inlet Reference gas outlet 125 48.5 25 Ø50.8 PIPING :B 4-G1/2,2-1/2NPT etc. Cable connection port PIPING:A 156 ± 3 256 ± 4 Stop valve Terminal side 170 49 Rc1/4 or 1/4NPT Calibration gas inlet C ØA ØB Flange Flange Flange ANSI Class 150 2 RF SUS304 ANSI Class 150 3 RF SUS304 ANSI Class 150 4 RF SUS304 DIN PN10 DN50 A SUS304 DIN PN10 DN80 A SUS304 DIN PN10 DN100 A SUS304 JIS 5K 65 FF SUS304 JIS 10K 65 FF SUS304 JIS 10K 80 FF SUS304 JIS 10K 100 FF SUS304 JPI Class 150 4 RF SUS304 JPI Class 150 3 RF SUS304 Westinghouse A 152.4 190.5 228.6 165 200 220 155 175 185 210 229 190 155 C B 120.6 152.4 190.5 125 160 180 130 140 150 175 190.5 152.4 127 C 4 - Ø19 4 - Ø19 8 - Ø19 4 - Ø18 8 - Ø18 8 - Ø18 4 - Ø15 4 - Ø19 8 - Ø19 8 - Ø19 8 - Ø19 4 - Ø19 4 - Ø11.5 t 19 24 24 18 20 20 14 18 18 18 24 24 14 PIPING A B B A B B A A B B B B A ØA ØB Flange F11_02.EPS l Standard Accessories Item Fuse Allen wrench Parts. No. A1113EF L9827AB Q'ty 1 1 Description 3.15 A For lock screw IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-9 l Hood (Option code /H) Unit: mm 150 ±4 ±3 150 ± 3 274 Material of HOOD : Aluminum 2.1.3 F13.ai Food Weight : Approx. 800g ZO21R Probe Protector Used when sample gas flow velocity is approx. 10 m/sec or more and dust particles wears the detector in cases such as pulverized coal boiler of fluidized bed furnace (or burner) to protect the detector from wearing by dust particles. When probe insertion length is 2.5 m or more and horizontal installation, specify the ZO21R-L200-□*B to reinforce the probe. Insertion Length: 1.05 m, 1.55 m, 2.05 m. Flange: JIS 5K 65A FF equivalent, ANSI Class 150 4 FF (without serration) equivalent . However, flange thickness is different. Material: SUS316 (JIS), SUS304 (JIS) (Flange) Weight: 1.05m; Approx. 6/10 kg (JIS/ANSI), 1.55 m; Approx. 9/13 kg (JIS/ANSI), 2.05 m; Approx. 12/16 kg (JIS/ANSI) Installation: Bolts, nuts, and washers are provided for detector, probe adapter and process-side flange. l Model and Codes Model ZO21R Insertion length Flange ( *1) Style code *1 Suffix code -L -100 -150 -200 -J -A *B Option code ------------------------------------ Description Probe Protector (0 to 700 °C) 1.05 m 1.55 m 2.05 m JIS 5K 65 FF SUS304 (JIS) ANSI Class 150 4 FF SUS304 (JIS) Style B Thickness of flange depends on dimensions of flange. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-10 l EXTERNAL DIMENSIONS Unit: mm Flange <1> (with bolts, nuts and washer) Washer (12) Mounting nut (M12) SUS316 gasket (t3.0) ØB ØA Ø60.5 Gas flow D t l (Insert length) ØB C l=1050,1550,2050 Dimensions of holes on opposing surface F2-3E.ai Flange<1> A JIS 5K 65 FF SUS304 ANSI Class 150 4 FF SUS304 2.1.4 B C t D 155 130 4 - Ø15 5 40 228.6 190.5 8 - Ø19 12 50 ZH21B Dust Protector This protector is designed to protect the probe output from dust agitation (i.e., to prevent combustible materials from entering the probe cell where humidity measurements are made) in a dusty environment. Insertion length: 0.428m Flange: JIS 5K 80 FF SUS304 or ANSI Class 150 4 FF SUS304 (However, flange thickness is different) Material: SUS 316(JIS), SUS 304(JIS) (flange) Weight: Approximately 6kg (JIS), approximately 8.5kg (ANSI) Mounting: Mounted on the probe or process flange with bolts and associated nuts and washers. l Model and Codes Model ZH21B Suffix code Option code Description ------------- ------ Dust Protector (0 to 600 °C) ------ 0.428 m ----------- JIS 5K 80 FF SUS304 (*1) ANSI Class 150 4B FF SUS304 (*2) ------ Style B Insertion length Flange ( *1) Style code -40 -J -A *B Note: The flange thickness varies. (*1) Specify the probe ZR22G-040-h-K (*2) Specify the probe ZR22G-040-h-C IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-11 Unit: mm 428 (Insertion length) øA øB ø72 ø76.3 t JIS flange Install facing upwards D ANSI flange øB øB C C ZH21B.ai Flange JIS 5K 80 FF SUS304 ANSI Class 150 4B FF SUS304 2.2 A B C t D 180 145 4 - Ø19 12 40 228.6 190.5 8 - Ø19 12 50 ZA8F Flow Setting Unit and ZR20H Automatic Calibration Unit 2.2.1 ZA8F Flow Setting Unit This flow setting unit is applied to the reference gas and the calibration gas in a system configuration (System 2). Used when instrument air is provided. This unit consists of a flowmeter and flow control valves to control the flow of calibration gas and reference gas. Standard Specifications FIowmeter Scale: Calibration gas; 0.1 to 1.0 l/min. Reference gas; 0.1 to 1.0 l/min. Construction: Dust-proof and rainproof construction Case Material: SPCC (Cold rolled steel sheet) Painting: Baked epoxy resin, Dark-green (Munsell 2.0 GY 3.1/0.5 or equivalent) Tube Connections: Rc1/4 or 1/4NPT (Female) Reference Gas Pressure: Clean air supply of sample gas pressure plus approx. 50 kPa G (or sample gas pressure plus approx.150 kPa when a check valve is used.) Pressure at inlet of the fl ow setting unit. (Max. 300 kPa G) Air Consumption: Approx. 1.5 l/min Weight: Approx. 2.3 kg Calibration gas (zero gas, span gas) Consumption: Approx. 0.7 l/min (at calibration time only) NOTE Use instrument air for span calibration gas, if no instrument air is available, contact YOKOGAWA. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-12 l Model and Codes Model Suffix code Option code ZA8F -------- --------- Flow setting unit ----------------- Rc 1/4 With 1/4 NPT adapter --------- Style C Joint Style code -J -A *C Description IM 11M12A01-04E 10th Edition : May 19, 2017-00 2-13 <2. Specifications> l External Dimensions 180 ø6 Hole Unit : mm (inch) 140 7 REFERENCE CHECK REFERENCE SPAN 235.8 ZERO 2B mounting pipe 222.8 Calibration gas outlet Span gas inlet Reference gas outlet Zero gas inlet 32 Piping connection port A REF OUT 70 AIR IN CHECK OUT SPAN IN ZERO IN Model 35 20 35 35 7 35 35 20 Instrument air inlet Piping connection port A ZA8F-J*C 5 - Rc1/4 ZA8F-A*C 5 - 1/4NPT Weight : Approx. 2.3 kg PIPNG INSIDE THE FLOW SETTING UNIT CHECK OUT Flowmeter REF OUT Flowmeter AIR IN ZERO GAS IN SPAN GAS IN Instrument air Approx. 1.5 l/min. Air Set Air pressure ; without check valve ; sample gas pressure + approx.50 kPaG with check valve ; sample gas pressure + approx.150 kPaG IM 11M12A01-04E F2.6E.ai 10th Edition : May 19, 2017-00 <2. Specifications> 2.2.2 2-14 ZR20H Automatic Calibration Unit This automatic calibration unit is applied to supply specified flow of reference gas and calibration gas during automatic calibration to the detector in a system configuration (System 3). l Specifications Equipped with the analyzer when automatic calibration is specified in the suffix code of the ZR202G Integrated type by selecting either “-A (Horizontal mounting)” or “-B (Vertical mounting)”. The ZR20H should be arranged when automatic calibration is to be required after the ZR202G has been installed. Ask Yokogawa service station for its mounting. Construction: Dust-proof and rainproof construction; NEMA4X/IP67 (excluding flowmeter) Mounting: Mounted on ZR202G, no vibration Materials: Body; Aluminum alloy, Piping; SUS316 (JIS), SUS304 (JIS), Flowmeter; MA (Methacrylate resin), Bracket; SUS304 (JIS) Finish: Polyurethane corrosion-resistance coating Case; Mint green (Munsell 5.6 BG3.3 /2.9) Cover; Mint green (Munsell 5.6 BG3.3/2.9) Piping Connection: Rc1/4 or 1/4NPT (Female) Power Supply: 24V DC (from ZR202G), Power consumption: Approx.1.3 W Reference Gas Pressure: Sample gas pressure plus Approx. 150 kPa (690 kPa max.), (Pressure at inlet of automatic calibration unit) Air Consumption: Approx. 1.5 l/min Weight: Approx. 2 kg Ambient Temperature: -20 to +55°C, no condensing and freezing Ambient Humidity: 0 to 95% RH Storage Temperature: -30 to +65°C l Model and Codes Suffix code ZR20H ------------- - - - - - - - - Automatic calibration unit for ZR202G *1 -R -T - - - - - - - - Rc1/4 - - - - - - - - 1/4NPT (F) Gas piping connection Reference air *2 Mounting — *1 *2 Option code Model -E -P Description - - - - - - - - Instrument air - - - - - - - - Pressure compensated -A -B - - - - - - - - Horizontal mounting - - - - - - - - Vertical mounting -A - - - - - - - - Always -A Ask Yokogawa service station for additional mounting of ZR20H to the preinstalled ZR202G. Select the appropriate reference gas of ZR20H according to the one of ZR202G. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-15 l External Dimensions (1) Horizontal Mounting (-A) Unit: mm 258 243 Ø84 Ø80 AUTO CAL. UNIT SPAN IN REF IN MODEL SUFFIX ZR20H STYLE S1 SUPPLY ZERO IN AMB.TEMP 690kPa MAX. -20 TO 558C USED WITH ZR202G NO. 40 40 44 MAX 66.5 166.5 56 Zero gas inlet Rc1/4 or 1/4NPT(Female) Reference gas inlet Rc1/4 or 1/4NPT(Female) Span gas inlet Rc1/4 or 1/4NPT(Female) (2) Vertical Mounting (-B) 49 [ 84 Ø8 0 111 AUTO CAL. UNIT MODEL STYLE SPAN IN REF IN ZR20H SUFFIX S1 SUPPLY 690kPa MAX. AMB.TEMP -20 TO 558C ZERO IN USED WITH ZR202G NO. 40 40 66.5 44 MAX 166.5 180 Zero gas inlet Rc1/4 or 1/4NPT(Female) Reference gas inlet Rc1/4 or 1/4NPT(Female) Span gas inlet Rc1/4 or 1/4NPT(Female) PIPNG INSIDE THE AUTOMATIC CALIBRATION UNIT Calibration gas Reference gas ZR202G body Check valve SPAN IN Span gas solenoid valve Span gas flowmeter To Air set REF. IN Reference gas flowmeter To Zero gas cylinder Zero gas solenoid valve Automatic calibration unit Needle valve ZERO IN Zero gas flowmeter F4.11E.ai IM 11M12A01-04E 10th Edition : May 19, 2017-00 2.3 <2. Specifications> 2-16 ZO21S Standard Gas Unit This is a handy unit to supply zero gas and span gas to the detector in a system configuration based on System 1. It is used in combination with the detector only during calibration. The ZO21S does not conform to CE marking. l Standard Specifications Function: Portable unit for calibration gas supply consisting of span gas (air) pump, zero gas cylinder with sealed inlet, flow rate checker and flow rate needle valve. Sealed Zero Gas Cylinders (6 provide): E7050BA Capacity: 1l Filled pressure: Approx. 686 kPa G (at 35 °C) Composition: 0.95 to 1.0 vol% O2 (N2 balanced) Power Supply: 100, 110, 115, 200, 220, 240V AC± 10%, 50/60 Hz Power Consumption: Max. 5 VA Case material: SPCC (Cold rolled steel sheet) Paint: Epoxy resin, baked Paint Color: Mainframe; Munsell 2.0 GY3.1/0.5 equivalent Cover; Munsell 2.8 GY6.4/0.9 equivalent Piping: Weight: Span gas: Ø6 x Ø4mm flexible tube connection Approx. 3 kg Internal pump draws in air from atmosphere, and feeds to detector. l Model and Codes Model Suffix code Option code ZO21S ----------- ------------- Standard gas unit ------------------------------------------------------------------------- 200 V AC 50/60 Hz 220 V AC 50/60 Hz 240 V AC 50/60 Hz 100 V AC 50/60 Hz 110 V AC 50/60 Hz 115 V AC 50/60 Hz ------------------------- Japanese version English version ------------- Style A Power supply Panel -2 -3 -4 -5 -7 -8 -J -E *A Style code Description 1600 253 228 92 l External Dimensions Flow checker Span gas valve Zero gas valve Gas outlet 354 Zero gas cylinder (6 cylinder): E7050BA F24.ai IM 11M12A01-04E 10th Edition : May 19, 2017-00 2.4 <2. Specifications> 2-17 Other Equipment 2.4.1 Dust Filter for Oxygen Analyzer (part no. K9471UA) This filter is used to protect the detector sensor from corrosive dust components or from a high concentration of dust when the oxygen concentration in utility boilers or concrete kilns are to be measured. This filter requires the measuring gas flow of 1 m/sec or faster to replace gas inside zirconia sensor. l Standard specification Applicable detector: Standard-type detector for general use (the sample gas flow should be approximately perpendicular to the probe.) Mesh: 30 microns Material: SiC (Filter), SUS316 (JIS) Weight: Approx. 0.2 kg Part No. Description K9471UA Filter K9471UX Tool Unit: mm Carborundum filter (SiC) 32 Attach the filter unit to the tip of the detector by screwing it clockwise. Ø51 Detector Screw 10 Increasing of insertion length F31.EPS 2.4.2 Dust Guard Protector (K9471UC) Recommended to be used when sample gas is likely to flow directly into the cell due to its flow direction in the stack or the like, flammable dust may go into the cell, or water drops are likely to fall and remain in the cell during downtime or the like due to the installation position. Material: SUS316 Weight: Approx. 0.3 kg IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> 2-18 Unit: mm Increasing of insertion length Ø50.8 100 4-Ø6 122 F11-1.ai 2.4.3 Stop Valve (part no. L9852CB or G7016XH) This valve is mounted on the calibration gas line in the system to allow for manual calibration. This is applied to a system configuration (System 1). Standard Specifications Connection: Rc1/4 or 1/4NPT (Female) Material: SUS 316 (JIS) Weight: Approx. 150 g Part No. Description L9852CB Joint: Rc1/4, Material: SUS316 (JIS) G7016XH Joint: 1/4NPT (F), Material: SUS316 (JIS) Rc1/4 or 1/4NPT 40 2.4.4 (Full open length) 58 Ø48 F15.ai Check Valve (part no. K9292DN or K9292DS) This valve is mounted on the calibration gas line (directly connected to the detector). This is applied to a system based on the system configuration (System 2 and 3). This valve prevents the sample gas from entering the calibration gas line. Although it functions as the stop valve, operation is easier as it does not require opening/closing at each calibration. Screw the check valve into the calibration gas inlet of the detector instead of the stop valve. l Standard Specifications Connection: Material: Pressure: Weight: Rc1/4 or 1/4NPT (Female) SUS304 (JIS) Between 70 kPa G or more 350 kPa G or less Approx. 90 g IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> Part No. 2-19 Description K9292DN Joint: Rc 1/4, Material: SUS304 (JIS) K9292DS Joint: 1/4 NPT (F), Material: SUS304 (JIS) Unit: mm K9292DN : Rc 1/4(A),R 1/4(B) K9292DS : 1/4FNPT(A),1/4NPT(Male)(B) A B Approx. 19 Approx. 54 F30.EPS 2.4.5 Air Set This set is used to lower the pressure when instrument air is used as the reference and span gases. l Standard Specifications Part no. G7003XF or K9473XK Primary Pressure: Max. 1 MPa G Secondary Pressure: 0.02 to 0.2 MPa G Connection: Rc1/4 or 1/4NPT (F) with joint adapter Weight: Approx.1 kg Part No. Description G7003XF Joint: Rc1/4, Material: Zinc alloy K9473XK Joint: 1/4 NPT (F), Material: Zinc alloy with adapter Part. no. G7004XF or K9473XG Primary Pressure: Max. 1 MPa G Secondary Pressure: 0.02 to 0.5 MPa G Connection: Rc1/4 or 1/4NPT (F) with joint adapter Weight: Approx. 1 kg Part No. Description G7004XF Joint: Rc1/4, Material: Zinc alloy K9473XG Joint: 1/4 NPT (F), Material: Zinc alloy with adapter IM 11M12A01-04E 10th Edition : May 19, 2017-00 l <2. Specifications> 2-20 External Dimensions Unit : mm View A Panel cut dimensions Horizontal mounting Vertical mounting ø15 22 40 +0.5 2-ø2.2 -0 40 2-ø6.5 max. 55 2-M6 screw depth 8 Secondary pressure gauge Max. 210 Ø74 Panel (Horizontal mounting) Secondary A 88 Primary Panel (Vertical mounting) Approx. 122 G7003XF, G7004XF: Rc 1/4 K9473XK, K9473XG: 1/4NPT connector 2.4.6 F22_1.ai Zero Gas Cylinder (part no. G7001ZC) The gas from this cylinder is used as the calibration zero gas and detector purge gas. l Standard Specifications Capacity: 3.4 l Filled pressure: 9.8 to 12 MPa G Composition: 0.95 to 1.0 vol%O2 (N2-balanced) (Note) Export of such high pressure filled gas cylinder to most countries is prohibited or restricted. 485 325 Unit : mm Weight : Approx. 6 kg ø140 F32.ai IM 11M12A01-04E 10th Edition : May 19, 2017-00 2.4.7 2-21 <2. Specifications> Pressure Regulator (G7013XF or G7014XF) for Gas Cylinder This regulator valve is used with the zero gas cylinders. l Standard Specifications Primary Pressure: Secondary Pressure: Connection: Material: Max. 14.8 MPa G 0 to 0.4 MPa G Inlet; W22 14 threads, right hand screw Outlet; Rc1/4 or 1/4NPT (Female) Brass body Unit : mm Approx.112 Primary Secondary pressure gauge pressure gauge Regulator handle W22 (Righthanded screw) ACH IN O IH TAK Stop valve Secondary safety valve * Outlet Primary safety valve Approx. 59 Approx. 82 Approx. 163 2.4.8 Approx. 174 Part No. * Outlet G7013XF Rc1/4 G7014XF 1/4 NPT female screw Case Assembly (E7044KF) for Calibration gas Cylinder This case is used to store the zero gas cylinders. l Standard Specifications Installation: Material: Case Paint: Weight: 2B pipe mounting SPCC (Cold rolled steel sheet) Baked epoxy resin, Jade green (Munsell 7.5 BG 4/1.5) Approx. 10 kg with gas cylinder (Note) Export of such high pressure filled gas cylinders to most countries is prohibited or restricted. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <2. Specifications> Pressure regulator G7013XF/ G7014XF 324 2-22 200 180 Zero gas cylinder 496 (G7001ZC) 2B mounting pipe ( Ø60.5 ) (160) (158.3) F23.ai The oblique line is an opening portion. (Note)The zero gas cylinder and the regulator valve are not included in the E7044KF (case assembly) 2.4.9 ZR202A Heater Assembly l Model and Codes Model Suffix code Option code Description --------- ----------- Heater Assembly for ZR202G ----------------------------------------------------------------------- 0.4 m 0.7 m 1m 1.5 m 2m 2.5 m 3m --------------------- with Jig None ----------- Always -A ZR202A Length (*1) -040 -070 -100 -150 -200 -250 -300 Jig for change -A -N -A ― *1 Suffix code of length should be selected as same as ZR202G installed. (Note) The heater is made of ceramic, do not drop or subject it to pressure stress. l External Dimensions Ø 45 Unit : mm L±12 (K9470BX) K9470BX Jig for change Ø 21.7 L: length 30 F2.16.EPS Weight (kg) Model & Code L ZR202A-040 552 Approx. 0.8 ZR202A-070 852 Approx. 1.2 ZR202A-100 1152 Approx. 1.6 ZR202A-150 1652 Approx. 2.2 ZR202A-200 2152 Approx. 2.8 ZR202A-250 2652 Approx. 3.4 ZR202A-300 3152 Approx. 4.0 IM 11M12A01-04E 10th Edition : May 19, 2017-00 3. <3. Installation> 3-1 Installation This chapter describes installation of the following equipment: Section 3.1 Model ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer Section 3.2 Model ZA8F Flow Setting Unit Section 3.3 Model ZR20H Automatic Calibration Unit Section 3.4 Case Assembly (E7044KF) for Calibration gas Cylinder 3.1 Installation of ZR202G Zirconia Oxygen/ Humidity Analyzer The following should be taken into consideration when installing the probe: (1) Easy and safe access to the probe for checking and maintenance work. (2) Ambient temperature of not more than 55°C, and the terminal box should not be affected by radiant heat. (3) A clean environment without any corrosive gases. NOTE A natural convection type analyzer (model ZR202G-----C), which uses ambient air as reference gas, requires that the ambient oxygen concentration be constant. Automatic calibration cannot be used when natural convection is selected as reference gas. (4) No vibration. (5) The sample gas satisfies the specifications described in Chapter 2. (6) No sample gas pressure fluctuations. CAUTION The ambient temperature of the ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer should be between - 20°C and 55°C. 3.1.1 Probe Insertion Hole CAUTION • The outside dimension of detector may vary depending on its options. Use a pipe that is large enough for the detector. Refer to Figure 3.1 for the dimensions. If the detector is mounted horizontally, the calibration gas inlet and reference gas inlet should face downwards. • If the detector is mounted horizontally, the calibration gas inlet and reference gas inlet should face downwards. • When using the detector with pressure compensation, ensure that the flange gasket does not block the reference gas outlet on the detector flange. If the flange gasket blocks the outlet, the detector cannot conduct pressure compensation. Where necessary, make a notch on the flange gasket. • The sensor (zirconia cell) at the probe tip may deteriorate due to thermal shock if water drops are allowed to fall on it, as it is always at high temperature. IM 11M12A01-04E 10th Edition : May 19, 2017-00 3-2 <3. Installation> (1) Do not mount the probe with the tip higher than the probe base. (2) If the probe length is 2.5 m or more, the detector should be mounted vertically (no more than a 5° tilt). (3) The detector probe should be mounted at right angles to the sample gas flow or the probe tip should point downstream. *1 Bounds of the probe insertion hole location (vertical) Flange matches the detector size 100 mm *1 Note Type Outside diameter of detector Standard 50.8 mm in diameter (Note) With dust filter 51 mm in diameter (Note) With probe protector 60.5 mm in diameter (Note) With dust protector 80 mm in diameter or longer (Note) (horizontal) 100 mm Four-hole flange JIS flange Eight-hole flange (the detector with dust protector) F3-1E.ai (Note) When using the detector with pressure compensation, ensure that the flange gasket does not block the reference gas outlet on the detector flange. If the flange gasket blocks the outlet, the detector cannot perform pressure compensation. Where necessary, make a notch in the flange gasket. When using the detector with ZH21B dust protector the diameter of the hole should be 80mm or larger. Figure 3.1 3.1.2 Illustrates an example of the probe insertion hole Installation of the Probe CAUTION • The cell (sensor) at the tip of the detector is made of ceramic (zirconia). Do not drop the detector, as impact will damage it. • A gasket should be used between the flanges to prevent gas leakage. The gasket material should be heatproof and corrosion-proof, suited to the characteristics of the sample gas. The following should be taken into consideration when mounting the general-use detector: (1) Make sure that the cell mounting screws (four bolts) at the probe tip are not loose. If a dust filter (see Section 2.4.1) is used, make sure it is properly attached to the detector. Refer to Section 3.1.3 for installation of the dust filter. (2) Where the detector is mounted horizontally, the calibration gas inlet and the reference gas inlet should face downward. 3.1.3 Installation of the Dust Filter (K9471UA), Dust Guard Protector (K9471UC) Probe Protector (ZO21R) CAUTION • The dust filter is used to protect the Zirconia sensor from corrosive dust or a high concentration of dust such as in utility boilers and concrete kilns. If a filter is used in combustion systems other than these, it may have adverse effects such as response delay. The combustion conditions should be examined carefully before using a filter. • The dust filter requires gas flow of 1 m/sec or faster at the front surface of the filter. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <3. Installation> 3-3 When you specify option code /F1, the detector is shipped with the dust filter mounted. Follow this procedure when replacing the filter in the detector. It is recommended that you read Chapter 11 prior to filter mounting, for it is necessary to be familiar with the detector’s construction, especially the sensor assembly. (1) Mount the dust filter by putting it on the end of the detector and screw the dust filter clockwise. Put a hook pin wrench (K9471UX), Ø52 to 55 in diameter, into the hole on the dust filter to fasten or remove it. Apply a heat-resistant coating (see Note 1) to the threads on the detector. Where mounting dust filter after having once removed it from the detector, reapply the heatresistant coating. Note 1: As the detector is heated to 700°C, it is recommended to use the heat-resistant coating on the threads to prevent seizing up. Name of heat-resistant coating material: “Never-Seez Nickel Special”. Carborundum filter (SiC) 32 Ø51 Detector Attach the filter unit to the tip of the detector by screwing it clockwise. Screw 10 Increasing of insertion length F31.EPS Figure 3.2 Installation of the dust filter The ZR202G is shipped with the dust guard protector when the option code /F2 is specified in case of ordering the detector. The protector should be used when preventing dusts and water drops from lowering the detector performance is desired. Screw the protector on the top of the detector so as to cover the top. When attaching or detaching the protector, perform by hooking holes of its side with a hook pin wrench for Ø52-55 hole( Pin diameter 4.5 mm: P/N K9471UX or the like) or by pass a screwdriver through the holes. When re-attaching the protector after detaching it, apply the “Never-Seez Nickel Special” to it. Increasing of insertion length Ø50.8 100 4-Ø6 122 F11-1.ai Figure 3.3 Installation of the dust guard protector The detector is used with a probe protector to support the probe (ZR202G) when the probe length is 2.5m or more and mounted horizontally. (1) Put a gasket (provided by the user) between the flanges and mount the probe protector in the probe insertion hole. IM 11M12A01-04E 10th Edition : May 19, 2017-00 3-4 <3. Installation> (2) Make sure that the sensor assembly mounting screws (four bolts) at the probe tip are not loose. (3) Mount the detector so that the calibration/reference gas inlet faces downward. Direction of the sample gas flow Gasket (t1.5) Unit: mm 2050 Ø60.5 Detector top Notch Calibration gas inlet Reference gas inlet F3103E.ai Figure 3.4 Probe protector (supporting the mounting strength) The detector is used with a probe protector to prevent the sensor from being worn by dust particles when there is a high concentration of dust and gas flow exceeds 10 m/sec (fine-carbon boiler or fluid-bed furnace). (1) Put the gasket that is provided by user between the flanges, and mount the probe protector in the probe insertion hole. The probe protector should be installed so that the notch comes to the downstream of the sample gas flow. (2) Make sure that the sensor assembly mounting screws (four bolts) at the probe tip are not loose. (3) Where the detector is mounted horizontally, the calibration/reference gas inlet should face downward. 1050,1550, 2050 Gasket (t1.5) Unit: mm Direction of the sample gas flow Detector top Mount the protector so that the notch is on the downstream side of gas flow. Calibration gas inlet Reference gas inlet F3104E.ai Figure 3.5 Mounting of detector with a probe protector (Dust wear protect) CAUTION When the probe protector is used in the ZR202G with pressure compensation (-P), instrument air leaking from the probe protector may affect the measured value. 3.1.4 Installation of ZH21B Dust Protector (1) Put the gasket that is provided by the user between the flanges and mount the dust protector in the probe insertion hole. (2) Make sure that the cell assembly mounting screws (four) at the probe tip are not loose. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <3. Installation> 3-5 (3) Mount the detector so that the calibration gas inlet and the reference gas inlet face downward. Unit : mm Reference gas inlet Calibration gas inlet F3-2E.ai Figure 3.6 3.2 Installation of the dust filter Installation of ZA8F Flow Setting Unit The following should be taken into consideration: (1) Easy access to the unit for checking and maintenance work. (2) Near to the detector and the converter (3) No corrosive gas. (4) An ambient temperature of not more than 55°C and little changes of temperature. (5) No vibration. (6) Little exposure to rays of the sun or rain. n Mounting of ZA8F Flow Setting Unit The flow setting unit can be mounted either on a pipe (nominal JIS 50 A) or on a wall. It should be positioned vertically so that the flowmeter works correctly. (1) Prepare a vertical pipe of sufficient strength (nominal JIS 50A: O.D. 60.5 mm) for mounting the flow setting unit. (The unit weighs approximately 2 to 3.5 kg.) (2) Mount the flow setting unit on the pipe by tightening the nuts with the U-bolt so that the metal fitting is firmly attached to the pipe. F3401E.ai Figure 3.7 Pipe Mounting IM 11M12A01-04E 10th Edition : May 19, 2017-00 <3. Installation> 3-6 (1) Make a hole in the wall as illustrated in Figure 3.8. Unit: mm 223 140 4 - Ø6 hole, or M5 screw F3.13E.ai Figure 3.8 Mounting holes (2) Mount the flow setting unit. Remove the pipe mounting parts from the mount fittings of the flow setting unit and attach the unit securely on the wall with four screws. F3.14E.ai Figure 3.9 3.3 Wall mounting Installation of ZR20H Automatic Calibration Unit The following should be taken into consideration: (1) Easy access to the unit for checking and maintenance work. (2) Near to the detector and the converter (3) No corrosive gas. (4) An ambient temperature of not more than 55°C and little change of temperature. (5) No vibration. (6) Little exposure to rays of the sun or rain. n Mounting of ZR20H Automatic Calibration Unit ZR202G -  -  -  -  - A or B is shipped with automatic calibration unit attached. The automatic calibration unit includes flowmeters and solenoid valves, so as to ensure reliable and accurate operation – Flowmeter should be mounted vertically. The associated probe is designed for horizontal or vertical mounting. If you buy the automatic calibration unit afterward, and need to install it or replace it, contact our service representative. IM 11M12A01-04E 10th Edition : May 19, 2017-00 3-7 <3. Installation> Unit: mm Horizontal mounting on the ZR202G (-A) 243 258 214 Terminal box side Display side 44 MAX 40 40 Zero gas inlet Rc1/4 or 1/4NPT(Female) 66.5 166.5 Reference gas inlet Rc1/4 or 1/4NPT(Female) Span gas inlet Rc1/4 or 1/4NPT(Female) Vertical mounting on the ZR202G (-B) 166.5 45 60 160 Span gas inlet Rc1/4 or 1/4NPT(Female) 180 44 MAX Reference gas inlet Rc1/4 or 1/4NPT(Female) 40 40 66.5 Zero gas inlet Rc1/4 or 1/4NPT(Female) F3.15E.ai Figure 3.10 3.4 Automatic Calibration Unit Mounting Installation of the Case Assembly (E7044KF) for Calibration Gas Cylinder The case assembly is used to store the G7001ZC zero gas cylinders. The following should be taken into consideration: (1) Easy access for cylinder replacement (2) Easy access for checking (3) Near to the detector and converter as well as the flow setting unit. (4) The temperature of the case should not exceed 40°C due to rays of the sun or radiated heat. (5) No vibration IM 11M12A01-04E 10th Edition : May 19, 2017-00 <3. Installation> 3-8 n Mounting Mount case assembly on a pipe (nominal JIS 50 A) as follows: (1) Prepare a vertical pipe of sufficient strength (nominal JIS 50A: O.D. 60.5 mm) for mounting the case assembly. (The sum of the case assembly and the calibration gas cylinder weighs approximately 4.2 kg.) (2) Mount the case assembly on the pipe by tightening the nuts with the U-bolt so that the metal fitting is firmly attached to the pipe. A pipe to be mounted (nominal JIS 50A : O.D. 60.5 mm) F3-16E.ai Figure 3.11 3.5 Pipe Mounting Insulation Resistance Test Even if the testing voltage is not so great that it causes dielectric breakdown, testing may cause deterioration in insulation and a possible safety hazard. Therefore, conduct this test only when it is necessary. The applied voltage for this test shall be 500 V DC or less. The voltage shall be applied for as short a time as practicable to confirm that insulation resistance is 20 MΩ or more. Remove wiring from the converter and the detector. 1. Remove the jumper plate located between terminal G and the protective grounding terminal. 2. Connect crossover wiring between L and N. 3. Connect an insulation resistance tester (with its power OFF). Connect (+) terminal to the crossover wiring, and (-) terminal to ground. 4. Turn the insulation resistance tester ON and measure the insulation resistance. 5. After testing, remove the tester and connect a 100 kΩ resistance between the crossover wiring and ground, to discharge. 6. Testing between the heater terminal and ground, contact output terminal and ground, analog output/input terminal and the ground can be conducted in the same manner. 7. Although contact input terminals are isolated, insulation resistance test cannot be conducted because the breakdown voltage of the surge-preventing arrester between the terminal and ground is low. 8. After conducting all the tests, replace the jumper plate as it was. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <3. Installation> 3-9 Contact input 1 Insulation resistance - tester + Crossover wiring Contact input 2 1 DI-1 2 DI-2 3 DI-C 4 DO-1 5 DO-1 6 DO-2 7 DO-2 8 FG 9 AO (+) 10 AO (-) 11 L 12 N 13 G 14 FG Crossover wiring Insulation resistance - tester + Remove jumper plate Insulation resistance - tester + F3.17E.ai Figure 3.12 IM 11M12A01-04E 10th Edition : May 19, 2017-00 Blank Page <4. Piping> 4-1 4. Piping This chapter describes piping procedures in the three typical system configurations for EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer. • Ensure that each check valve, stop valve and joints used for piping are not leaking. Especially, when there is any leakage at piping and joints for the calibration gas, it may cause clogging of the piping or incorrect calibration. • Be sure to conduct leakage test after setting the piping. • Basically, apply instrument air (dehumidified to the dew point -20°C or lower, removed any dust, oil mist and the like) for the reference gas when piping. • When the instrument applies natural convection for reference gas (Model ZR202G----C), ambient air near the probe is used for reference gas; therefore the accuracy of analysis will be affected by ambient humidity changes or the like. If more accurate analysis is necessary, use instrument air (dehumidified to the dew point -20°C or lower, removed any dust, oil mist and the like) for reference gas. Stable analyzing can be conducted when using instrument air. 4.1 Piping for System 1 The piping in System 1 is illustrated in Figure 4.1 ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer Stop valve to 240 V AC ~ 100 Contact input Analog output, contact output Digital output (HART) Calibration gas ~ 100/110/115/200/220/240 V AC ZO21S Standard gas unit Figure 4.1 F1.1E.ai Piping for System 1 Piping in System 1 is as follows: • Place a stop valve through the nipple at the calibration gas inlet of the equipment. Then mount a joint for a 6 mm (O.D.) x 4 mm (I.D.) soft tube at the stop valve connection hole of the inlet side (see Section 4.1.2). The tube is to be connected to this joint only during calibration. CAUTION • The stop valve should be connected directly to the equipment. If any piping is present between the analyzer and the stop valve, condensed water may be produced in the pipe, which may cause damage to the sensor by rapid cooling when the calibration gas is introduced. • The reference gas should have an oxygen concentration identical to that of fresh air (21%). IM 11M12A01-04E 10th Edition : May 19, 2017-00 <4. Piping> 4.1.1 4-2 Piping Parts for System 1 Check that the parts listed in Table 4.1 are provided. Table 4.1 Piping Parts Equipment Oxygen/ Humidity Analyzer Piping location Calibration gas inlet Reference gas inlet Parts Name Description Stop valve (L9852CB or G7016XH) recommended by YOKOGAWA Nipple * Rc1/4 or 1/4 NPT General parts Joint for tube connection Rc1/4 (1/4NPT) for a 6x4mm soft tube General parts (Sealed up) (when piping is required, refer to Section 4.1.3) Note: Parts with marking * are used when required. General parts can be found on the local market. 4.1.2 Piping for the Calibration Gas When carrying out calibration, connect the piping (6(O.D) x 4(I.D.) mm tube) from the standard gas unit to the calibration gas inlet of the oxygen analyzer. Mount the stop valve (of a quality specified by YOKOGAWA) through a nipple (found on the local market) as illustrated in Figure 4.2, and mount a joint (also found on the local market) at the stop valve tip. (The stop valve may be mounted on the equipment when the oxygen analyzer is shipped.) Note: Mount the stop valve in the vicinity of the equipment. Stop valve Nipple Tube connection joint F4.2E.ai Figure 4.2 4.1.3 Piping for the Calibration Gas Inlet Piping for the Reference Gas • Normally, no piping is required for the reference gas inlet when the equipment applies natural convection for reference gas (models ZR202G-----C). Leave the plug as it is. If the air around the probe is polluted and the necessary oxygen concentration (21 vol%O2) cannot be obtained, make instrument air piping as in Section 4.2, System 2. • When the equipment uses instrument air for the reference gas, piping is required as described in Section 4.2, System 2 (models ZR202G-----E or P). 4.2 Piping for System 2 Piping in System 2 is illustrated in Figure 4.3. IM 11M12A01-04E 10th Edition : May 19, 2017-00 4-3 <4. Piping> ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer Stop valve or Check valve ~ Reference gas 100 to 240 V AC Contact input Analog output, contact output Digital output (HART) Flowmeter Needle valve Air Set Calibration gas Instrument air Span gas(Same as Zero gas calibration) ZA8F flow setting unit Pressure regulator Zero gas cylinder Calibration gas unit case F1.2E.ai Figure 4.3 Piping for System 2 System 2 illustrated in Figure 4.3 requires piping as follows: • Mount the check valve or the stop valve through a nipple to the calibration gas inlet of the equipment. 4.2.1 Piping Parts for System 2 Check that the parts listed in Table 4.2 are provided. Table 4.2 Equipment Oxygen/ Humidity Analyzer Piping Parts Piping location Calibration gas inlet Parts Name Description Stop valve or check valve Stop valve (L9852CB or G7016XH recommended by YOKOGAWA Check valve (K9292DN or K9292DS) provided by YOKOGAWA Nipple * Rc1/4 or 1/4 NPT Zero gas cylinder User' s scope Pressure Regulator (G7013XF or G7014XF) recommended by YOKOGAWA Joint for tube connection Rc1/4 or 1/4 NPT Reference gas inlet Air set General parts General parts (G7003XF/K9473XK or G7004XF/ K9473XG) recommended by YOKOGAWA Joint for tube connection Rc1/4 or 1/4 NPT General parts Note: Parts with marking * are used when required. General parts can be found on the local market. 4.2.2 Piping for the Calibration Gas This piping is to be installed between the zero gas cylinder and the ZA8F flow setting unit, and between the ZA8F flow setting unit and the ZR202G analyzer. The cylinder should be placed in a case assembly E7044KF or the like to avoid any direct sunlight or radiant heat so that the gas cylinder temperature may not exceed 40°C. Mount the pressure regulator (recommended by YOKOGAWA) on the cylinder. Mount the stop valve or the check valve (recommended by YOKOGAWA) through the nipple (found on the local market) at the calibration gas inlet of the equipment as illustrated in Figure 4.4. (The stop valve or the check valve may have been mounted on the equipment when shipped.) Connect the flow setting unit and the analyzer to a 6mm (O.D.) x 4mm (I.D.) (or nominal size 1/4 inches) or larger stainless steel pipe. IM 11M12A01-04E 10th Edition : May 19, 2017-00 4-4 <4. Piping> Piping for the reference gas 6mm (O.D.) by 4mm (I.D.) stainless steel pipe Piping for the calibration gas 6mm (O.D.) by 4mm (I.D.) stainless steel pipe Stop valve or check valve F4.8E.ai Figure 4.4 4.2.3 Piping for the Calibration Gas Inlet Piping for the Reference Gas Reference gas piping is required between the air source (instrument air) and the flow setting unit, and between the flow setting unit and the analyzer. Insert the air set next to the flow setting unit in the piping between the air source and the flow setting unit. Use a 6mm (O.D.) x 4mm (I.D.) (or nominal size 1/4 inches) stainless steel pipe between the flow setting unit and the analyzer. 4.3 Piping for System 3 Piping in System 3 is illustrated in Figure 4.5. In System 3, calibration is automated; however, the piping is basically the same as that of System 2. Refer to Section 4.2. Adjust secondary pressure of both the air set and the zero gas regulator so that these two pressures are approximately the same. The flow rate of zero and span gases (normally instrument air) are set by a individual needle valve. After installation and wiring, check zero gas calibration contact output (see Sec. 7.10.2), and adjust zero gas regulator and calibration gas needle valve so that zero gas flow is within the permitted range. Next check span gas calibration contact output and adjust air set so that span gas flow is within the permitted range. ZR202G Integrated type Zirconia Oxygen/Humidity Analyzer with automatic calibration ~ Automatic Calibration Unit ZR20H 100 to 240 V AC Contact input Analog output, contact output Digital output (HART) Air Set Reference gas Instrument air Span gas Calibration gas (Zero) Pressure regulator Zero gas cylinder Calibration gas unit case Note: The installation temperature limits range for integrated type analyzer is -20 to 55°C. Figure 4.5 F1.3E.ai Piping for System 3 IM 11M12A01-04E 10th Edition : May 19, 2017-00 4-5 <4. Piping> Installation of ZR20H Automatic Calibration Unit Unit: mm Horizontal mounting on the ZR202G (-A) 243 258 214 Terminal box side Display side 44 MAX 40 40 Zero gas inlet Rc1/4 or 1/4NPT(Female) 66.5 166.5 Reference gas inlet Rc1/4 or 1/4NPT(Female) Span gas inlet Rc1/4 or 1/4NPT(Female) Vertical mounting on the ZR202G (-B) 166.5 45 60 160 Span gas inlet Rc1/4 or 1/4NPT(Female) 180 44 MAX Reference gas inlet Rc1/4 or 1/4NPT(Female) 40 40 66.5 Zero gas inlet Rc1/4 or 1/4NPT(Female) F3.15E.ai Piping Diagram Calibration gas Reference gas ZR202G body Check valve SPAN IN Span gas solenoid valve Span gas flowmeter To Air set REF. IN Reference gas flowmeter To Zero gas cylinder Zero gas solenoid valve Needle valve ZERO IN Zero gas flowmeter Automatic Calibration Unit F4.11E.ai IM 11M12A01-04E 10th Edition : May 19, 2017-00 4-6 <4. Piping> 4.4 Piping for the Oxygen Analyzer with Pressure Compensation ZR202G-----P Oxygen Analyzer with pressure compensation may be used in System 2 and System 3. Use this style analyzer whenever the furnace pressure exceeds 5 kPa (see Note). Even if the furnace pressure is high, the detector can measure by adjusting pressure of the probe with the furnace pressure using instrument air. The inside pressure of the probe will be kept identical to the furnace pressure by feeding instrument air at higher pressure than that in the furnace. NOTE The process gas pressure should not be subjected to rapid changes. The detector with pressure compensation is illustrated in Figure 4.6. Unit: mm 342±4 *1 Rc 1/4 or 1/4 NPT (Reference gas inlet) *1 25 *1 C ØA *1 ØB PIPING Reference gas outlet Flange *1 4-G1/2, 2-1/2 NPT or the like (Wiring connection) PIPING Stop valve 49 Rc1/4 or 1/4NPT (Calibration gas inlet) F4.12E.ai *1: Dimension may vary depending on the detector type. Ensure that the flange gasket does not block off the reference gas outlet. Where necessary, make a notch on the flange Figure 4.6 Oxygen Analyzer with Pressure Compensation Ensure that the furnace gas does not flow into the probe. Valve operation 1. For safety, stop the furnace that the detector is to be installed in. If furnace internal pressure is high, this is especially dangerous. 2. Before starting instrument air flow, completely shut the stop valve in front of the reference gas outlet. 3. Check that the reference gas outlet is not blocked by a flange gasket or the like. 4. Set the instrument air pressure higher than furnace internal pressure. 5. Completely open the stop valve in front of the reference gas outlet and, after turning on instrument air flow, start furnace operation. As furnace internal pressure rises, confirm that instrument air continues to flow and adjust the valve or increase supply pressure if necessary. 6. After furnace internal pressure stabilizes, adjust flow. 7. If furnace operation is stopped, stop instrument air flow and completely shut the stop valve in front of the reference gas outlet. You may leave reference gas flowing if you wish. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <4. Piping> 4-7 CAUTION • Use suitable cable glands to completely seal the detector. As far as possible do not stop the instrument air flow, to prevent the sample gas from entering the detector and damaging the zirconia cell. • Connect the stop valve, which is at the calibration gas inlet, directly to the equipment. If piping connections are made between the detector and the needle valve, condensation will result inside the piping and cause the sensor to be damaged when the calibration gas is introduced. Figure 4.7 illustrates an example of System 2 using the analyzer with pressure compensation. Supplying the air pressure (flow) may vary depending on the furnace pressure. It is recommended to use a flow gauge and an air set meeting the furnace pressure. ZR202G Integrated type Zirconia Oxygen Analyzer with pressure compensation Stop valve or Check valve ~ Reference gas 100 to 240 V AC Contact input Analog output, contact output Digital output (HART) Flowmeter Needle valve Air Set Calibration gas Instrument air Span gas(Same as Zero gas calibration) ZA8F flow setting unit Pressure regulator Zero gas cylinder Calibration gas unit case F1.2E.ai Figure 4.7 Illustrates an example of System 2 using the analyzer with pressure compensation. NOTE When using the ZA8F Flow Setting Unit and the ZR20H Automatic Calibration Unit, please note that the supplying airflow (pressure) will vary depending on the furnace pressure. IM 11M12A01-04E 10th Edition : May 19, 2017-00 4-8 <4. Piping> 4.4.1 Piping Parts for Oxygen Analyzer with Pressure Compensation Check that the parts listed in Table 4.3 are provided. Table 4.3 Equipment Piping Parts Piping location Oxygen Calibration gas inlet Analyzer with pressure compensation Parts Name Description Check valve or stop valve Stop valve (L9852CB or G7016XH) recommended by YOKOGAWA Check valve (K9292DN or K9292DS) provided by YOKOGAWA Nipple * Rc1/4 or 1/4 NPT Zero gas cylinder User's scope Pressure regulator (G7013XF or G7014XF) recommended by YOKOGAWA General parts Joint for tube connection Rc1/4 or 1/4 NPT Reference gas inlet Air set General parts (G7003XF/ K9473XK or G7004XF / K9473XG) recommended by YOKOGAWA Joint for tube connection Rc1/4 or 1/4 NPT General parts Note: Use parts with marking * as required. General parts can be found on the local market. 4.4.2 Piping for the Calibration Gas Calibration gas piping is basically identical to that of System 2. See Section 4.2.2. 4.4.3 Piping for the Reference Gas Reference gas piping is basically identical to that of for System 2. See Section 4.2.3. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <5. Wiring> 5-1 5. Wiring This chapter describes wiring procedures necessary for the EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer. 5.1 General WARNING NEVER supply current to the converter or any other device constituting a power circuit in combination with the converter, until all wiring is completed. CAUTION This product complies with CE marking. Where compliance with CE marking is necessary, the following wiring procedure is necessary. • Install an external switch or circuit breaker to the power supply of the converter. • Use an external switch or circuit breaker rated 5 A and conforming with IEC 947-1 or IEC 947-3. • It is recommended that the external switch or circuit breaker be mounted in the same room as the equipment. • The external switch or circuit breaker should be installed within the reach of the operator, and marked as the power supply switch of this equipment. Wiring procedure Wiring should be made according to the following procedure: 1. Be sure to connect the shield of the shielded line to FG terminal of the analyzer. 2. The most outer sheath of the signal line and the power cable should be stripped off to the minimum necessary length. 3. Signal will be affected by noise emission when the signal lines, power cable and heater cable are located in the same conduit. When using a conduit, signal lines should be installed in the separate conduit from power and heater cables. Be sure to ground the metal conduit. 4. Mount the attached two blind plugs to unused cable connection gland(s) of the equipment. 5. The cables indicated in Table 5.1 are used for wiring. 6. After completing the wiring, screw the cover in the terminal box body and secure it with a lock screw. Table 5.1 Cable Specifications Terminal name of converter Name L, N, Power supply AO+, AO- Analog output Need for shields Number of wires 2 or 3 * Ο 2 DO-1, DO-2 Contact output 2 to 4 DI-1, DI-2, DI-C Contact input 3 Note *: When the case is used for protective grounding, use a 2-wire cable. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <5. Wiring> 5-2 WARNING Cables that withstand temperatures of at least 80 °C should be used for wiring. CAUTION • Select suitable cable O.D. to match the cable gland size. • Protective grounding should be connected in ways equivalent to JIS D style (Class 3) grounding (the grounding resistance is 100 Ω or less). • Special consideration of cable length should be taken for the HART communication, For the detail, refer to Section 1.1.2 of the IM 11M12A01-51E “Communication Line Requirements”. 5.1.1 Terminals for the External Wiring Remove the terminal cover on the opposite side of the display to gain access to the external wiring terminals. DI DI 1 2 C DO 1 FG + AO – L N DO 2 G FG F5101.ai Figure 5.1 Terminals for External Wiring 5.1.2 Wiring Make the following wiring for the equipment. It requires a maximum of four wiring connections as shown below. (1) Analog output signal (2) Power and ground (3) Contact output (4) Contact input IM 11M12A01-04E 10th Edition : May 19, 2017-00 5-3 <5. Wiring> Model ZR202G Integrated type Zirconia Oxygen Analyzer Contact input 1 Contact output 1 Contact output 2 Contact input 2 1 DI-1 2 DI-2 3 DI-C 4 DO-1 5 DO-1 6 DO-2 7 DO-2 8 FG 9 AO (+) 10 AO (-) 11 L 12 N 13 G 14 FG Analog output 4-20 mA DC Digital output 100 to 240 V AC, 50 or 60 Hz F28.EPS The protective grounding for the analyzer shall be connected either the protective ground terminal in the equipment or the ground terminal on the case. Standard regarding grounding: Ground to earth, ground resistance: 100Ω or less. Figure 5.2 5.1.3 Wiring Connection Mounting of Cable Gland For each wiring inlet connection of the equipment, mount the conduit appropriate for the screw size or a cable gland. 25 Rc1/4 or 1/4NPT Reference gas inlet Cable gland Rc1/4 or 1/4NPT Calibration gas inlet 4-G1/2,2-1/2NPT etc. Cable connection port Figure 5.3 5.2 F5.3E.ai Cable Gland Mounting Wiring for Analog Output This wiring is for transmitting 4 to 20mA DC output signals to a device, e.g. recorder. Maintain the load resistance including the wiring resistance of 550Ω or less. Analyzer Receiver + - AO(+) AO(-) Shielded cables FG F5.4E.ai Figure 5.4 Wiring for Analog Output IM 11M12A01-04E 10th Edition : May 19, 2017-00 5.2.1 <5. Wiring> 5-4 Cable Specifications Use a 2-core shielded cable for wiring. 5.2.2 Wiring Procedure (1) M4 screws are used for the terminals. Use crimp-on terminals appropriate for M4 terminal screws for cable connections. Ensure that the cable shield is connected to the FG terminal of the equipment. (2) Be sure to connect (+) and (-) polarities correctly. CAUTION • Before opening the cover, loosen the lock screw. If the screw is not loosened first, the cover will be improperly engaged to the body, and the terminal box will require replacement. When opening and closing the cover, remove any sand particles or dust to avoid gouging the thread. • After screwing the cover on the equipment body, secure it with the lock screw. 5.3 Wiring Power and Ground Terminals Wiring for supplying power to the analyzer and grounding the equipment. Ground DI DI 1 2 Grounding to the earth terminal on the equipment case Equipment case Grounding terminal FG + AO- Lock washer Crimp contact of the grounding line 5.3.1 DO 1 L N DO 2 G FG Jumper plate ~ 100~240VAC 50/60Hz Figure 5.5 C F5.5E.ai Power and Grounding Wiring Wiring for Power Line Connect the power wiring to the L and N terminals of the equipment. For a three-core cable, ground one core appropriately. Proceed as follows: (1) Use a two-core or three-core cable. (2) M4 screws are used for the terminals. Use crimp-on terminals appropriate for M4 terminal screws for cable connections. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <5. Wiring> 5.3.2 5-5 Wiring for Ground Terminals The ground wiring of the analyzer should be connected to either the ground terminal of the equipment case or the terminal inside of the equipment. Proceed as follows: (1) Keep the ground resistance of 100Ω or less (JIS Class D grounding). (2) When connecting the ground wiring to the ground terminal of the equipment case, be sure that the lock washer is in contact with the case surface (see Figure 5.5.). (3) Ensure that the jumper plate is connected between the G terminal and the FG terminal of the equipment. (4) The size of external ground screw thread is M4. Each cable should be terminated corresponding crimp-on terminals. 5.4 Wiring for Contact Output The equipment can output a maximum of two contact signals. These contact outputs can be used for different applications such as a low alarm or high alarm. Do the contact output wiring according to the following requirements. Analyzer Terminal box Annunciator or the like DO-1 DO-1 #1 Output DO-2 DO-2 #2 Output F5.6E.ai Figure 5.6 5.4.1 Contact Output Wiring Cable Specifications The number of cores varies depending on the number of contacts used. 5.4.2 Wiring Procedure (1) M4 screws are used for the terminals. Use crimp-on terminals appropriate for M4 terminal screws for cable connections. (2) The contact output relays are rated 30 V DC 3A, 250 V AC 3A. Connect a load (e.g. pilot lamp and annunciator) within these limits. 5.5 Wiring for Contact Input The converter can execute specified function when receiving contact signals. To use these contact signals, proceed wiring as follows: Converter Terminal box DI-1 Contact input 1 DI-2 DI-C Contact input 2 F5.7E.ai Figure 5.7 Contact Input Wiring IM 11M12A01-04E 10th Edition : May 19, 2017-00 5.5.1 <5. Wiring> 5-6 Cable Specifications Use a 2-core or 3-core cable for this wiring. Depending on the number of input(s), determine which cable to use. 5.5.2 Wiring Procedure (1) M4 screws are used for the terminal of the converter. Each cable should be equipped with the corresponding crimp contact. (2) The ON/OFF level of this contact input is identified by the resistance. Connect a contact input that satisfies the descriptions in Table 5.2. Table 5.2 Resistance Identification of Contact Input ON/OFF Closed Open 200 Ω or less 100 kΩ or more IM 11M12A01-04E 10th Edition : May 19, 2017-00 6. 6-1 <6. Components> Components This chapter describes the names and functions of components for the major equipment of the EXAxt ZR Integrated type Zirconia Oxygen/Humidity Analyzer. 6.1 ZR202G Zirconia Oxygen/Humisity Analyzer Terminal box, Non explosion-proof JIS C0920 / equivalent to IP44D. Equivalent to NEMA 4X/IP66 (Achieved when the cable entry is completely sealed with a cable gland in the recirculation pressure compensated version.) Probe this part is inserted in the furnace. Selectable of length from 0.4, 0.7, 1.0, 1.5, 2.0, 2.5 or 3.0m. Contact Flange used to mount the detector. Selectable from JIS, ANSI, DIN or JPI standard models. Dust filter mounting screw Calibration gas pipe opening Metal O-ring Pipe support U-shaped pipe Bolt Probe Screw Sensor (cell) Filter F6.1E.ai Washer Figure 6.1 Integrated type Zirconia Oxygen/Humidity Analyzer IM 11M12A01-04E 10th Edition : May 19, 2017-00 6.2 6-2 <6. Components> ZA8F Flow Setting Unit, ZR20H Automatic Calibration Unit Reference gas flow setting valve Span gas flow setting valve Zero gas flow setting valve Flowmeter for reference gas Flowmeter for calibration gas Figure 6.2 F6-4E.ai ZA8F Flow Setting Unit Horizontal mounting Flowmeter for Span gas Vertical mounting Flowmeter for Reference gas Flowmeter for Span gas Flowmeter for Reference gas Flowmeter for Zero gas Flowmeter for Zero gas SPAN IN REF IN ZERO IN Span gas flow setting valve Span gas flow setting valve SPAN IN REF IN ZERO IN Zero gas flow setting valve Span gas flow setting valve Reference gas flow setting valve Reference gas flow setting valve F6.3E.ai Figure 6.3 ZR20H Automatic Calibration Unit IM 11M12A01-04E 10th Edition : May 19, 2017-00 7-1 <7. Startup> 7. Startup The following describes the minimum operating requirements — from supplying power to the converter to analog output confirmation to manual calibration. In the figure listed in this manual, the example of the oxygen analyzer is shown mainly. In the case of the humidity analyzer, unit indication may be different. Please read it appropriately. Check piping and wiring connections Set output ranges Set up valves Check current loop Supply power Check contact action Confirm converter type setting Calibrate analyzer Select gas to be measured Set detailed data Place in normal operation F7.0E.ai Figure 7.1 Startup Procedure For system tuning by HART communication, refer to the IM 11M12A01-51E ‘’HART Communication Protocol’’. 7.1 7.2 Checking Piping and Wiring Connections Refer to Chapters 4 and 5, earlier in this manual, for piping and wiring confirmations. Valve Setup Set up valves and associated components used in the analyzer system in the following procedures: (1) If a stop valve is used in the detector’s calibration gas inlet, fully close this valve. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-2 <7. Startup> (2) If instrument air is used as the reference gas, adjust the Air set secondary pressure so that the air pressure of sample gas pressure plus approx. 50 kPa (plus approx. 150 kPa for with check valve) (300 kPa maximum for the ZA8F, 690 kPa maximum for the ZR20H) is obtained. Turn the reference gas flow setting valve in the flow setting unit to obtain the flow of 800 to 1000 ml/min. (Turning the valve shaft counterclockwise increases the rate of flow. When turning the valve shaft, if the valve has a lock nut, first loosen the lock nut.) After completing the valve setup, be sure to tighten the lock nut. NOTE The calibration gas flow setting will be described later. Fully close the needle valve in the flow setting unit. 7.3 Supplying Power to Converter CAUTION To avoid temperature changes around the sensor, it is recommended that the power be continuously supplied to the Oxygen Analyzer if it is used in an application where its operations and suspensions are periodically repeated. It is also recommended to flow a span gas (instrument air) beforehand. Supply power to the converter. A display as in Figure 7.2, which indicates the detector’s sensor temperature, then appears. As the heat in the sensor increases, the temperature gradually rises to 750°C. This takes about 20 minutes after the power is turned on, depending somewhat on the ambient temperature and the sample gas temperature. After the sensor temperature has stabilized at 750°C, the converter is in the measurement mode. The display panel then displays the oxygen concentration as in Figure 7.3. This is called the basic panel display. Figure 7.2 7.4 Display of Sensor Temperature While Warming Up % Figure 7.3 Measurement Mode Display Operation of Infrared Switch 7.4.1 Display and Switches This equipment uses an infrared switch that enables operation with the cover closed. Figure 7.4 shows the infrared switch and the display. Table 7.1 shows the three switch (keys) and functions. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-3 <7. Startup> 4: Decimal point 1: Data display area > > µMmNkgalbbl % scftm3 /d /s /h /m ENT 3: Engineering-unit display area 2: Infrared switch Figure 7.4 F7.3E.ai Infrared switch and the display 1. Data display area: Displays the oxygen concentration, humidity, set values, alarm numbers, and error numbers. 2. Infrared switch: Three switches perform data setting operations. 3. Engineering-unit display area: the percent sign appears when the oxygen concentration or humidity is displayed. 4. Decimal point: A decimal point is displayed. Table 7.1 Switch and Function Switch Function > 1. Moves the position of the digit to the right. If you continuously touch the key, the position of the digit will move continuously to the right, finally returning to the leftmost position after reaching the rightmost position of the digit. 2. Selects Yes or No. 3. When you touch this key together with the [ENT] key, the previous display then appears, or the operation will be cancelled. ^ Used to change values. If you continuously touch this key, the value of the digit will increase continuously, e.g., from 1 to 2 to 3 (for numeric data), or from A to B to C (for alphabetic characters), and finally return to its original value. ENT 1. Used to change the basic panel display to the parameter selection display. 2. Used to enter data. 3. Advances the operation. The three infrared switches are activated by completely touching the glass surface of the switch. To touch any of the keys continuously, first touch the surface and then completely remove your finger from the surface. Then touch it again. Infrared switches consist of two elements: an infrared emitting element and an infrared acceptance element. Infrared light-waves from the element bounces on the operator’s finger and are reflected back to the acceptance element, thereby causing the infrared switch to turn on and off, depending on the strength of the reflected light-waves. From this operating principles, carefully observe the following: CAUTION 1. Be sure to put the equipment case cover back on. If this is not done, the infrared switch will not reflect the infrared light-waves, and a “dSPErr” error will be issued. 2. Before placing the equipment in operation, be sure to wipe off any moisture or dust on the glass surface if it is wet or dirty. Also make sure your fingers are clean and dry before touching the glass surface of the switch. 3. If the infrared switches are exposed to direct sunlight, they may not operate correctly. In such a case, change position of the display or install a sun cover. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7.4.2 7-4 <7. Startup> Display Configuration The parameter codes provided for the equipment are used to control the equipment display panels (see below). By selecting appropriate parameter codes, you can conduct calibration and set operation parameters. Figure 7.5 shows the configuration of display items. The parameter codes are listed in groups of seven; which are briefly described in Table 7.2. To enter parameters, you first need to enter the password, refer to See 7.4.3. Touch the [ >] key and [ ENT] key at same time to revert to the main screen. Basic panel display % Password entry display Group A setup display Group B setup display Group C setup display Group D setup display Parameter code selection display Group E setup display Group F setup display Group G setup display Figure 7.5 Display Configuration Table 7.2 Display Functions F7.4E.ai Display Basic panel Function and item to be set Displays the oxygen concentration in normal operation, or displays the detector heater temperature while warming up. In case of humidity analyzer, displays the oxygen con. or moisture quantity, or mixture ratio in normal operation. If an error or alarm arises, the corresponding error or alarm number appears. Password entry Enters the password for the parameter code selection display. Group A setup Displays detailed data, such as the cell voltage or temperature. Group B setup Sets and performs calibration. Group C setup Sets analog output. Group D setup Sets an alarm. Group E setup Sets the input and output contacts. Group F setup Selects the type of equipment and sets the parameters for computation. Group G setup Performs the current-loop or contact checks. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-5 <7. Startup> 7.4.3 Entering Parameter Code Selection Display This section briefly describes the password entry procedure for entering the parameter code selection display. The password is 1102 - it cannot be changed to a different password. Switch operation ENT > ∧ Display 21.0% PASSno Description Warm-up is complete, and the basic panel is now displayed. > ∧ ENT > ∧ ENT 0000 Touch the [ENT] key again. This allows you to change the leftmost digit that is flashing. > ∧ ENT 1000 Set the password 1102. If you touch the [∧] key, the digit that is flashing will be 1. > ∧ ENT 1000 Touch the [>] key to move the position of the digit that is flashing to the right one digit. > ∧ ENT 1100 Touch the [∧] key to change the numeric value to 1. > ∧ ENT 1100 > ∧ ENT 1102 Touch the [>] key again to move the position of the digit that is flashing to the right one more digit. Continuously touch the [>] key, and the position of the digit that is flashing will move continuously to the right. Touch the [∧] key to change the numeric value to 2. Continuously touch [∧] key, and the numeric value increases continuously. > ∧ ENT 1102 > ∧ ENT A01 The symbol [ Continuously touch the [ENT] key for at least three seconds to display "PASSno." If you touch the [ENT] key, all the digits flash. Touch the [ENT] key again to display A01 on the parameter code selection display. ] indicates that the key is being touched. Light characters indicate that the digits are flashing. CAUTION • If no key is touched for at least 20 seconds during password entry, the current display will automatically switch to the basic panel display. • If no key is touched for at least 10 minutes during parameter code selection, the current display will automatically switch to the basic panel display. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-6 <7. Startup> 7.4.4 Selecting Parameter Codes Switch operation ∧ ENT Display Description > ∧ ENT A01 > ∧ ENT A01 Password has been entered and the parameter code selection display has appeared. Character A is flashing, indicating that character A can be changed. If you touch the [>] key once, the position of the digit that is flashing will move to the right. This allows you to change 0. Touch the [>] key again to move the position of the digit that is flashing to the right one more digit. This enables you to change numeric character 1. > ∧ ENT A01 > ∧ ENT b01 > ∧ ENT C01 Touch the [∧] key once to change to C. > ∧ ENT d01 > ∧ ENT Set Value Continuously touch the [∧] key, and the value of the digit that is flashing will increase continuously, from D to E to F to G to A. Numeric values will change from 0 to 1 to 2 to 3 … to 8 to 9 and back to 0. However, numbers that are not present in the parameter codes will be skipped. Each digit is changed independently. Even though a low-order digit changes from 9 to 0, a high-order digit will not be carried. After you select the desired character, touch the [ENT] key. The set data will be displayed. > The symbol [ 7.4.5 A01 Touch the [>] key again to return the position of the digit that is flashing to A. Continuously touch the [>] key, and the position of the digit that is flashing will move continuously to the right. If you touch the [∧] key once, character A will change to B. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. Changing Set Values (1) Selecting numeric values from among preset values Switch operation ∧ ENT > Display 0 Description The set value is displayed after the parameter code selection. An example of how to select either 0, 1, or 2 as the set value is given below. (The currently set value is 0.) Touch the [∧] key once to change the current value from 0 to 1. > ∧ ENT 1 > ∧ ENT 2 Touch the [∧] key again to change to the numeric value 2. > ∧ ENT 0 > ∧ ENT C01 If you touch the [∧] key again, the numeric value will return to 0. Continuously touch the [∧] key, and the numeric values will change continuously. Display the desired numeric value and touch the [ENT] key. The display will then return to the parameter code selection IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-7 <7. Startup> (2) Entering numeric values such as oxygen concentration values and factors Switch operation ∧ ENT Display > ∧ ENT 00.0 > ∧ ENT 09.0 > ∧ ENT 09.0 > ∧ ENT 09.8 Touch the [∧] key to set the numeric value 8. > ∧ ENT 09.8 Where the correct numeric value is displayed, touch the [ENT] key. > ∧ ENT 09.8 If you touch the [ENT] key again, the flashing stops and the current set value will be in effect. > ∧ ENT C11 Touch the [ENT] key once again to return to the parameter code selection display. > 00.0 Description The set value is displayed after the parameter code selection. An example of entering "9.8" is given below. (The currently set value is 0.0) Touch the [>] key to move the position of the digit that is flashing to the digit to be changed. Continuously touch the [>] key, and the position of the digit that is flashing will move continuously to the right. Touch the [∧] key to set the numeric value 9. Continuously touch the [∧] key, and the numeric value will change in sequence from 0 to 1 to 2 to 3 … to 8 to 9 and back to 0. Touch the [>] key to move the position of the digit that is flashing to the right. (3) If invalid numeric values are entered. Switch operation ∧ ENT > Display 98.0 > ∧ ENT Err > ∧ ENT 00.0 Description If an invalid numeric value (beyond the input range specified) is entered, "Err" will appear for two seconds after touching the [ENT] key. "Err" appears for two seconds, and the display returns to the first set value. Re-enter the numeric value. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7.5 7-8 <7. Startup> Confirmation of Equipment Type Setting This equipment can be used for both the Oxygen Analyzer and the Humidity Analyzer. If you choose optional specification /HS at the time of purchase, the equipment is set for the Humidity Analyzer. Before setting the operating data, be sure to check that the desired model has been set. Note that if the equipment type setting is changed after operating data are set, the operating data that have been set are then initialized and the default settings remain. Set the equipment type with parameter code「F01」. See Table 10.7 or Table 10.8, later in this manual. CAUTION Note that if the equipment type is changed, operation data that have already been set are initialized (reverting to the default setting). Table 7.3 Converter Type Setting Procedure Switch operation ∧ ENT Display Description > > ∧ ENT > ∧ ENT 0 > ∧ ENT 0 > ∧ ENT 0 Touch the [ENT] key. The numeric value will flash. > ∧ ENT 0 Touch the [ENT] key again to stop the numeric value from flashing. > ∧ ENT F01 Touch the [ENT] key once again, and the display will change to the parameter code. > ∧ ENT Basic panel display Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) The symbol [ A01 F01 Display after the password has been entered. Touch the [∧] key to switch to Group F. If an unwanted alphabetic character after F has been entered, continuously touch the [∧] key to return to the original. Touch the [ENT] key for confirmation. If 0 (zero) is entered, the oxygen analyzer is already set. If 1 (one) is entered, the humidity analyzer has been set. Change the setting following the steps below. Continuously touch the [∧] key, and the position of the digit will change from 1 to 0 to 1 to 0. Release the [ENT] key when 0 is displayed. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7.6 Selection of Measurement Gas Combustion gases contain moisture created by burning hydrogen in the fuel. If this moisture is removed, the oxygen concentration might be higher than before. You can select whether the oxygen concentration in a wet gas is to be measured directly, or compensated for its dry-gas value before use. Use the parameter code “F02” to set the measurement gas. For details on the parameter code, see Table 10.7 or Table 10.8, later in this manual. Table 7.4 Setting Measurement Gas Switch operation ∧ ENT Display Description > > ∧ ENT > ∧ ENT F01 > ∧ ENT F02 > ∧ ENT 0 > ∧ ENT 0 > ∧ ENT 0 Touch the [ENT] key. The numeric value will flash. > ∧ ENT 0 Touch the [ENT] key again to stop the value from flashing. > ∧ ENT F03 Touch the [ENT] key once again, and the display will change to the parameter code selection panel. > ∧ ENT Basic panel display Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) The symbol [ 7.7 7-9 <7. Startup> A01 F01 Display after the password has been entered. Touch the [∧] key to switch to Group F. If an unwanted alphabetic character after F has been entered, continuously touch the [∧] key to return to the original. Touch the [>] key to move the position of the digit that is flashing to the right. Touch the [∧] key to change the numeric value to 2. If an unwanted numeric value has been entered, continuously touch the [∧] key to return to the original. Touch the [ENT] key for confirmation. If 0 (zero) is entered, the oxygen concentration in a wet gas is already set. If the oxygen concentration in a dry gas is to be entered, follow the steps below to set 1 (one). Continuously touch the [∧] key, and the position of the digit will change from 1 to 0 to 1 to 0. Release the [ENT] key when 1 (one) is displayed. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. Output Range Setting This section sets forth analog output range settings. For details, consult Section 8.1,”Current Output Settings,” later in this manual. 7.7.1 Oxygen Analyzer -Minimum Current (4 mA) and Maximum Current (20 mA) Settings Use the parameter codes “C11” to set the oxygen concentration at 4 mA and “C12” to set the oxygen concentration at 20 mA. The following shows where 10% O2 is set at 4 mA and 20% O2 at 20 mA. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-10 <7. Startup> Table 7.5 Minimum and Maximum Value Setting Procedure Switch operation ∧ ENT > > ∧ ENT > ∧ > Display Description A01 C01 Display after the password has been entered. ENT C01 Touch the [>] key to move the position of the digit that is flashing to the right. ∧ ENT C11 Touch the [∧] key to enter the numeric value 1. > ∧ ENT 000 Touch the [ENT] key to display the current set value (0% O2 has been set). > ∧ ENT 000 Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT 010 Touch the [∧] key to change the numeric value to 1. > ∧ ENT 010 If you touch the [ENT] key, all the digits flash. > ∧ ENT 010 Touch the [ENT] key again to stop the flashing. > ∧ ENT C11 Touch the [ENT] key once again, and the display will switch to the parameter code selection display. > ∧ ENT C11 Set the oxygen concentration at 20 mA. Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT C12 Touch the [∧] key to enter the numeric value 2. > ∧ ENT 025 Touch the [ENT] key to display the current set value. > ∧ ENT 025 Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT 020 Touch the [∧] key to change the numeric value to 0. The numeric value will change from 5 to 6 ... to 9 and back to 0. > ∧ ENT 020 If you touch the [ENT] key, all the digits flash. > ∧ ENT 020 Touch the [ENT] key again to stop the flashing. > ∧ ENT C12 Touch the [ENT] key once again to switch to the parameter code selection display. > ∧ ENT Basic panel display Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) The symbol [ Set the oxygen concentration at 4 mA. Change the parameter code to C11. Touch the [∧] key to switch to Group C. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-11 <7. Startup> 7.7.2 Output Range Setting Select any one of the analog output settings — oxygen, humidity, and mixing ratio. If the /HS option was specified at the time of purchase, the equipment is a humidity analyzer. For other than this setting, the analyzer is an oxygen analyzer. If mixed measurement is required, change the existing output setting as follows. Use parameter code C01 for the setting. When the humidity analyzer is specified in the above setting for the type of detector, the analog output will be set to “humidity” if data initialization is performed. 7.7.3 Humidity Analyzer -Minimum Current (4 mA) and Maximum Current (20 mA) Settings This section describes how to set the humidity readings corresponding to 4 mA and 20 mA to 30% H2O and 80% H2O respectively. Table 7.6 Minimum and Maximum Value Setting Procedure Switch operation ∧ ENT > > ∧ ENT > ∧ > Display Description A01 C01 Display after the password has been entered. ENT C01 Touch the [>] key to move the position of the digit that is flashing to the right. ∧ ENT C11 Touch the [∧] key to enter the numeric value 1. > ∧ ENT C11 Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT C13 Touch the [∧] key to enter the numeric value 13. > ∧ ENT 000 Touch the [ENT] key to display the current set value. The humidity 0% H20 is now being displayed. > ∧ ENT 000 Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT 030 Touch the [∧] key to change the numeric value to 3. > ∧ ENT 030 If you touch the [ENT] key, all the digits flash. > ∧ ENT 030 Touch the [ENT] key again to stop the flashing. > ∧ ENT C13 Touch the [ENT] key once again, and the display will switch to the parameter code selection display. > ∧ ENT C13 Set the humidity reading at 20 mA. Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT C14 Touch the [∧] key to change the number 3 in C13 to “4.” > ∧ ENT 025 Touch the [ENT] key to display the current set value. Set the humidity reading at 4 mA. Change the parameter code to C13. Touch the [∧] key to switch to Group C. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 Switch operation > ∧ ENT Display 025 Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT 085 Touch the [∧] key to change the number 2 in C25 to “8.” > ∧ ENT 085 Touch the [>] key to move the position of the digit that is flashing to the right. > ∧ ENT 080 Touch the [∧] key to change the number 5 in C85 to “0.” The number changes from 5 to 6 . to 9 to 0. > ∧ ENT 080 If you touch the [ENT] key, all the digits flash. > ∧ ENT 080 Touch the [ENT] key again to stop the flashing. > ∧ ENT C14 Touch the [ENT] key once again to switch to the parameter code selection display. > ∧ ENT Basic panel display Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) The symbol [ 7.8 7-12 <7. Startup> Description ] indicates that the key is being touched. Light characters indicates that the digits are flashing. Setting Display Item 7.8.1 Oxygen Analyzer - Setting Display Item Display items are defined as items displayed on the basic panel display. Parameter code “A00” or “F08” is used to set the display items as shown in Table 7.7. The oxygen concentration is set at the factory before shipment. In addition, if the data initialization is performed, the oxygen concentration will be set. Table 7.7 Display Item Values set with A00 or F08 0 1 or 2 3 Items displayed on the basic panel display Indicates the oxygen concentration. For humidity analyzers only. (if 1 or 2 is set for the oxygen analyzer, "0.0" is only displayed on the basic panel display.) Displays an item for the current output. If the output damping has been set for the current output, values involving the output damping are displayed. CAUTION If you set “3” in the parameter code “A00” or “F08”, be sure to select “Oxygen Concentration” in the following mA output setting (see Section 8.1, “Current Output Setting”). IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-13 <7. Startup> 7.8.2 Humidity Analyzer - Setting Display Item Display items are those items that are displayed on the basic panel display. Parameter code A00 or F08 is used to set the display items as shown in the table below. If the humidity analyzer /HS option was specified at the time of purchase, the equipment is a humidity analyzer. For other than the above, the equipment is set to oxygen concentration at the factory before shipment. If mix ratio is to be measured, change the existing setting as follows. Additionally, when humidity analyzer is selected in the Detector Type Setting in the previous section, the display item will be humidity if data initialization is performed. Table 7.8 Display Item Values set with A00 or F08 7.9 Items displayed on the basic panel display 0 Indicates the oxygen concentration. 1 Indicates the humidity. 2 Indicates the mix ratio. 3 Displays an item for the current output. If the output damping has been set for the current output, values involving the output damping are displayed. Checking Current Loop The set current can be output as an analog output. This enables the checking of wiring between the converter and the receiving instrument. Current loop checking is performed using parameter code “G01”. Table 7.9 Checking Current Loop Switch operation ∧ ENT > > ∧ ENT > ∧ > Display Description A01 G01 Display after the password has been entered. ENT 00.0 Touch the [ENT] key. The output current remains preset with the outputhold feature (Section 2.3). ∧ ENT 10.0 Touch the [∧] key to set the numeric value 1 (to set a 10-mA output). > ∧ ENT 10.0 Touch the [ENT] key to have all the digits flash. > ∧ ENT 10.0 Touch the [ENT] key again to stop the flashing. A 10-mA output is then issued. > ∧ ENT G01 > ∧ ENT Basic panel display Touch the [ENT] key once again to switch to the parameter code selection display. At that point, the output current returns to the normal value. Touch the [>] key together with the [ENT] key to return to the basic panel display. The symbol [ Touch the [∧] key to switch to Group G. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-14 <7. Startup> 7.10 Checking Contact I/O Conduct a contact input and output check as well as an operation check of the solenoid valves for the optional automatic calibration unit. Table 7.10 Parameter Codes for Checking Contact I/O Check item Parameter code Set value and contact action Contact output 1 G11 0 Open 1 Closed Contact output 2 G12 0 Open 1 Closed 0 Off 1 On Off Automatic calibration solenoid valve (zero gas) G15 Automatic calibration solenoid valve (span gas) G16 0 1 On Contact input 1 G21 0 Open 1 Closed 0 Open 1 Closed Contact input 2 7.10.1 G22 Contact Output Check Follow Table 7.11 to check the contact output. The table uses an example with contact output 1. Table 7.11 Checking Contact Output Switch operation ∧ ENT > > ∧ ENT > ∧ > Display Description A01 G01 Display after the password has been entered. ENT G01 Touch the [>] key to move the position of the digit that is flashing to the right one digit. ∧ ENT G11 Touch the [∧] key to enter 1. > ∧ ENT 0 Touch the [ENT] key to have 0 (zero) flash. The contact is then open. > ∧ ENT 1 Touch the [∧] key to set 1 (one). > ∧ ENT 1 Touch the [ENT] key. The flashing continues. > ∧ ENT 1 Touch the [ENT] key again to stop the flashing, and the contact will be closed. > ∧ ENT G11 > ∧ ENT Basic panel display The symbol [ Touch the [∧] key to switch to Group G. Touch the [ENT] key once again to switch to the parameter code selection display. The contact then returns to the original state. Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) ] indicates that the key is being touched. Light characters indicates that the digits are flashing. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-15 <7. Startup> CAUTION If you conduct an open-close check for the contact output 2, Error 1 (cell voltage failure) or Error 2 (heater temperature abnormal) will occur. This is because the built-in heater power of the detector, which is connected to contact output 2, is turned off during the above check. So, if the above error occurs, reset the equipment or turn the power off and then back on to restart (refer to Section 10.4, “Reset,” later in this manual). 7.10.2 Checking Calibration Contact Output The calibration contacts are used for the solenoid valve drive signals for the Automatic Calibration Unit. This output signal enables you to check the equipment operation. Check the flowmeter gas flow for that operation. Follow the steps in Table 7.12. The table uses an example with a zero gas solenoid valve. Table 7.12 Checking Calibration Contact Output Switch operation ∧ ENT > > ∧ ENT > ∧ > Display Description A01 G01 Display after the password has been entered. ENT G01 Touch the [>] key to move the position of the digit that is flashing to the right one digit. ∧ ENT G11 Touch the [∧] key to enter 1. > ∧ ENT G11 Touch the [>] key to move the position of the digit that is flashing to the right one digit. > ∧ ENT G15 Touch the [∧] key to enter 5. > ∧ ENT 0 Touch the [ENT] key to have 0 flash. The solenoid valve remains closed. > ∧ ENT 1 Touch the [∧] key to enter 1. > ∧ ENT 1 Touch the [ENT] key. The flashing continues. > ∧ ENT 1 Touch the [ENT] key again to stop the flashing, and the solenoid valve will be open to let the calibration gas flow. > ∧ ENT G15 > ∧ ENT Basic panel display Touch the [ENT] key once again to switch to the parameter code selection display. The solenoid valve will then be closed. Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) The symbol [ Touch the [∧] key to switch to Group G. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-16 <7. Startup> 7.10.3 Checking Input Contacts Follow Table 7.13 to check the input contacts. The table uses an example with input contact 1. Table 7.13 Checking Input Contacts Switch operation ∧ ENT > > ∧ ENT > ∧ > Display Description A01 G01 Display after the password has been entered. ENT G01 Touch the [>] key to move the position of the digit that is flashing to the right one digit. ∧ ENT G21 Touch the [∧] key to enter 2. > ∧ ENT 0 > ∧ ENT G21 > ∧ ENT Basic panel display The symbol [ Touch the [∧] key to switch to Group G. Touch the [ENT] key. 0 is displayed with the contact open. If the contact is closed, the display will be 1 (one). This enables you to check whether or not the wiring connections have been properly made or not. Touch the [ENT] key once again to switch to the parameter code selection display. Touch the [>] key together with the [ENT] key to return to the basic panel display. ] indicates that the key is being touched. Light characters indicates that the digits are flashing. 7.11 Calibration The converter is calibrated in such a way that the actual zero and span gases are measured and those measured values are used to agree with the oxygen concentrations in the respective gases. There are three types of calibration procedures available: (1) Manual calibration conducting zero and span calibrations, or either of these calibrations in turn. (2) Semi-automatic calibration which uses the infrared switches or a contact input signal and conducts calibration operations based on a preset calibration time and stable time. (3) Automatic calibration conducted at preset intervals. Manual calibration needs the ZA8F Flow Setting Unit to allow manual supply of the calibration gases. Semi-automatic and automatic calibrations need ZR20H Automatic Calibration Unit to allow automatic supply of the calibration gases. The following sections set forth the manual calibration procedures. For details on semi-automatic and automatic calibrations, consult Chapter 9, “Calibration,” later in this manual 7.11.1 Calibration Setup Set the following three items before carrying out a calibration. Parameter codes for these set items are listed in Table 7.14. (1) Mode setting There are three calibration modes: manual, semi-automatic, and automatic. Select the desired mode. This section uses manual mode for calibration. (2) Oxygen concentration in zero gas Enter the zero gas oxygen concentration for calibration. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 <7. Startup> 7-17 (3) Oxygen concentration in span gas Enter the span gas oxygen concentration for calibration. If instrument air is used, enter 21 vol % O2. When using the ZO21S Standard Gas Unit (for use of the atmospheric air as a span gas), use a hand-held oxygen analyzer to measure the actual oxygen concentration, and then enter it. CAUTION If instrument air is used for the span gas, dehumidify the air to a dew point of -20°C and remove any oil mist or dust. Incomplete dehumidifying or unclean air will have an adverse effect on the measurement accuracy. Table 7.14 Calibration Parameter Codes Set item Calibration mode Parameter code B03 Set value 0 Manual calibration 1 Semi-automatic calibration 2 Automatic calibration Zero gas oxygen concentration B01 Enter oxygen concentration. Span gas oxygen concentration B02 Enter oxygen concentration. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-18 <7. Startup> Table 7.15 Calibration Setup Procedure Switch operation ∧ ENT Display Description > > ∧ ENT > ∧ ENT 001.00 % > ∧ ENT 001.00 % Touch the [>] key to move the position of the digit that is flashing to 1. > ∧ ENT 000.00 % Touch the [∧] key to change to 0. > ∧ ENT 000.00 % Touch the [>] key to move the position of the digit that is flashing to the right one digit. > ∧ ENT 000.90 % Touch the [∧] key to change the numeric value to 9. > ∧ ENT 000.90 % Touch the [>] key to move the position of the digit that is flashing to the right one digit. > ∧ ENT 000.98 % Touch the [∧] key to change the numeric value to 8. > ∧ ENT 000.98 % Touch the [ENT] key to have all the digits flash. > ∧ ENT 000.98 % Touch the [ENT] key again to stop the flashing. > ∧ ENT > A01 b01 b01 Display after the password has been entered. Set the zero gas concentration. Switch the parameter code to B01. Here, set 0.98%. Touch the [ENT] key to display the currently set value. Touch the [ENT] key once again to switch to the parameter code selection display. Set the span gas concentration by above procedure, set 21 %. ∧ ENT b03 Next, set the calibration mode. Switch the parameter code to B03. > ∧ ENT 0 > ∧ ENT 0 > ∧ ENT 0 > ∧ ENT > ∧ ENT The symbol [ b03 Basic panel display Touch the [ENT] key to display the currently set value. If it is 0, you can leave it as is. If it is other than 0, change it to 0 (zero). Touch the [ENT] key. The numeric value will flash. Touch the [ENT] key again to stop the flashing. Touch the [ENT] key once again to switch to the parameter code selection display. Touch the [>] key together with the [ENT] key to return to the basic panel display. (This is not required if you proceed to make another setting.) (The displayed numeric characters indicate the measurement gas concentration.) ] indicates that the key is being touched. Light characters indicates that the digits are flashing. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 7-19 <7. Startup> 7.11.2 Manual Calibration The following describes how to conduct a calibration. n Preliminary Before conducting a manual calibration, be sure that the ZA8F Flow Setting Unit zero gas flow valve is fully closed. Open the zero gas cylinder pressure regulator so that the secondary pressure will be a sample gas plus approx. 50 kPa (or sample gas pressure plus approx. 150 kPa when a check valve is used, maximum pressure rating is 300 kPa). n Calibration Implementation This manual assumes that the instrument air is the same as the reference gas used for the span gas. Follow the steps below to conduct manual calibration. When using the ZO21S Standard Gas Unit (for use of the atmospheric air as a span gas), use a hand-held oxygen analyzer to measure the actual oxygen concentration, and then enter it. Table 7.16 Conducting Calibration Switch operation > > ∧ ∧ ENT > ∧ > Display Description A01 b10 Display after the password has been entered. ENT CAL ∧ ENT CAL > ∧ ENT SPAn Y > ∧ ENT 21.00 % > ∧ ENT OPEn /20.84 > ∧ ENT 20.84 % Touch the [ENT] key, and "CAL" will be displayed. To cancel the above, touch the [>] key and [ENT] key together to return to the B10 display. If you touch the [ENT] key again, "CAL" then flashes. To cancel the above, touch the [>] key and [ENT] key together, the display will return to the B10 display. If you touch the [ENT] key again, "SPAn Y" appears (Y is flashing). If you omit the span calibration, touch the [>] key, and change "Y" to "N". If you touch the [ENT] key, the display then jumps to "ZEro Y." Touch the [ENT] key to display the calibration gas value, in other words, the span gas concentration set in Section 7.10.1, "Calibration Setup." To cancel the above, touch the [>] key and [ENT] key together, then the display returns to "SPAn Y." If you touch the [ENT] key, "OPEn" and the currently measured value are displayed alternately. Open the Flow Setting Unit span gas flow valve and adjust the span gas flow to 600 ± 60 ml/min. To do this, loosen the valve lock nut and gently turn the valve control (shaft) counterclockwise. Check the calibration gas flowmeter for confirmation. If the automatic calibration unit is connected, open the span gas solenoid valve, and the measured value changes to the span gas value. When the display becomes stable, proceed to the next step. To cancel the above, touch the [>] key and [ENT] key together, then the display returns to "SPAn Y." If you touch the [ENT] key, all the digits flash. At that point, no calibration is conducted yet. > ∧ ENT ZEro Y ENT Switch the parameter code to B10. (The key operations for this procedure are omitted.) If you touch the [ENT] key again, the flashing stops and "ZEro Y" appears. Close the span gas flow valve. Secure the span gas lock nut for leakage. If the automatic calibration unit is connected, close the span gas solenoid valve. If zero gas calibration is omitted, touch the [>] key to change "Y" to "N". Next, if you touch the [ENT] key, the display jumps to "CALEnd." IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 <7. Startup> Switch operation Display > ∧ ENT 0.98 % > ∧ ENT OPEn /0.89 > ∧ ENT 0.89 % > ∧ ENT CALEnd > ∧ ENT b10 > ∧ ENT Basic panel display 7-20 Description Touch the [ENT] key to display the calibration gas value. This value must be the zero gas concentration set in Section 7.10.1, "Calibration Setup," earlier in this manual. To cancel the above, touch the [>] key and [ENT] key together, then the display returns to "ZEro Y." If you touch the [ENT] key, "OPEn" and the currently measured value are displayed alternately. Open the Flow Setting Unit zero gas flow valve and adjust the zero gas flow to 600 ± 60 ml/min. To do this, loosen the valve lock nut and gently turn the valve control (shaft) counterclockwise. Check the calibration gas flowmeter for confirmation. If the automatic calibration unit is connected, open the zero gas solenoid valve, and then the measured value changes to the zero gas value. When the display becomes stable, proceed to the next step. To cancel the above, touch the [>] key and [ENT] key together, then the display returns to "ZEro Y." If you touch the [ENT] key, all the digits flash. At that point, no calibration is conducted yet. Touch the [ENT] key again to get the measured value to agree with the zero gas concentration. Close the zero gas flow valve. Secure the valve lock nut for leakage during measurement. If the automatic calibration unit is connected, close the span gas solenoid valve. "CALEnd" flashes during the output hold time. If "output hold" is specified in the Output Hold setting," it remains as an analog output (see Section 8.2). When the preset output hold time is up, the calibration is complete. The output hold time is set to 10 minutes at the factory. If you touch both the [>] key and [ENT] key at the same time during the preset Output Hold Time, the calibration is aborted and the parameter code selection display appears. If you touch the [>] key and [ENT] key together, then the basic panel display appears. The above “display” is a result of switch operations. ] indicates the keys are being touched, and the light characters indicate “flashing.” The symbol [ “/” indicates that the characters are displayed alternately. IM 11M12A01-04E 9th Edition : Dec. 19, 2015-00 <8. Detailed Data Setting> 8. Detailed Data Setting 8.1 Current Output Setting 8.1.1 8-1 Oxygen Analyzer_Current Output Setting This section describes setting of the analog output range. Table 8.1 shows parameter codes for the set items. Table 8.1 Current Output Parameter Codes Set item Analog output Parameter code Set value C01 0 Oxygen concentration 1 4 mA (fixed *1) 2 4 mA (fixed *1) Output mode C03 0 Linear 1 Logarithm Min. oxygen concentration C11 Oxygen concentration at 4 mA Max. oxygen concentration C12 Oxygen concentration at 20 mA Output damping constant C30 0 to 255 seconds *1: 8.1.2 For the oxygen analyzer, set 0 (zero) only for parameter code C01. When it is set, the current output is 4-mA fixed regardless of the oxygen concentration. Oxygen Analyzer_Analog Output Setting This section describes how to set the analog output range. (1) To provide an oxygen concentration, use parameter code C11 to set the minimum oxygen concentration at 4 mA, and use parameter code C12 to set the maximum oxygen concentration at 20 mA. (2) To provide a humidity output, use parameter code C13 to set the minimum humidity at 4 mA, and use parameter code C14 to set the maximum humidity at 20 mA. (3) To provide a mix ratio, use parameter code C15 to set the minimum mix ratio at 4 mA, and use parameter code C14 to set the maximum mixing ratio at 20 mA. Refer to Table 8.2 for the parameter codes. Table 8.2 Current Output Parameter Codes Set item Analog output Output mode Parameter code C01 C03 Set value 0 Oxygen concentration 1 Humidity 2 Mixing ratio 0 Linear 1 Logarithm Min. oxygen concentration C11 Oxygen concentration reading corresponding to 4 mA Max. oxygen concentration C12 Oxygen concentration reading corresponding to 20 mA Min. humidity C13 Humidity reading corresponding to 4 mA Max. humidity C14 Humidity reading corresponding to 20 mA Min. mixing ratio C15 Mixing ratio at 4 mA Max. mixing ratio C16 Mixing ratio at 20 mA Output damping constant C30 0 to 255 seconds IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-2 NOTE When you select logarithmic mode in Section 8.1.3, “Output Mode,” later in this manual, the oxygen concentration, humidity reading, and mixing ratio remain constant at 0.1% O2, 0.1% H2O and 0.01 kg/kg respectively. 8.1.3 Setting Minimum Oxygen Concentration (at 4 mA) and Maximum Oxygen Concentration (at 20 mA) Set the oxygen concentration values at 4 mA and 20 mA. The minimum concentration of oxygen for the minimum current (4 mA) is 0% O2 or 6% to 76% O2. The maximum concentration of oxygen for the maximum current (20 mA) ranges from 5% to 100% O2, and must be greater than 1.3 times the concentration of oxygen set for the minimum. If it does not fall within this input range setting, the setting will be invalid, and the previous set values will remain. Setting example 1 If the setting (for a 4 mA current) is 10% O2, you must set the oxygen concentration for the maximum (20 mA) point at 13% O2. Setting example 2 If the setting (for a 4 mA current) is 75% O2, you must set the oxygen concentration for the maximum (20 mA) point at 98% O2 (75 × 1.3). (Numbers after the decimal point are rounded up.) CAUTION When you select logarithmic mode, the minimum output remains constant at 0.1% O2, and the parameter “C11” display remains unchanged. 8.1.4 Minimum and Maximum Settings Corresponding to 4 mA and 20 mA Set the output items for oxygen concentration reading, humidity reading and mixing ratio corresponding to 4 mA and 20 mA. When the oxygen concentration was selected with parameter code C01, use parameter codes C11 and C12 for the minimum and maximum settings; when the humidity setting was selected with parameter code C01, use parameter codes C13 and C14 for those settings; and when the mix ratio setting was selected with parameter code C01, use parameter codes C15 and C16 for those settings. 8.1.5 Input Ranges The range low and high values are restricted as follows: l Oxygen Concentration setting range The range min. O2 concentration value (corresponding to 4 mA output) can be set to either 0 vol%O2 or in the range of 6 to 76 vol%O2. The range max. O2 concentration value (corresponding to 20 mA output) can be set to any value in the range of 5 to 100 vol%O2, however the range max. setting must be at least 1.3 times the range min. setting. IM 11M12A01-04E 10th Edition : May 19, 2017-00 8-3 <8. Detailed Data Setting> If you do not observe this restriction, the measurement will be invalid, and any previous valid value will be used. The gray area in figure represents the valid setting range. Setting example 1 If the range minimum (corresponding to 4 mA output) is set to 10 vol%O2 then range maximum (corresponding to 20 mA output) must be at least 13 vol%O2. Maximum oxygen concentration, vol%O2 (for a maximum current of 20 mA) Setting example 2 If the range minimum (corresponding to 4 mA output) is set to 75 vol%O2 then range maximum (corresponding to 20 mA output) must be at least 75x1.3=98 vol%O2 (rounding decimal part up). 95 85 75 Ranges over which oxygen concentrations can be set 65 55 45 Outside ranges 35 25 15 5 5 15 25 35 45 55 Minimum oxygen concentration, vol%O2 (for a minimum current of 4 mA) Minimum-Maximum setting range of oxygen concentration 65 75 F8.0E.ai Figure A l Humidity (amount-of-moisture-content) setting range The minimum humidity is set to 0% H2O or ranges from 26 to 100% H2O. The maximum humidity ranges from 25% to 100% H2O, and must be greater than 0.8 times plus 23 the humidity set for the minimum. Setting example 1 If the setting (for a 4 mA current) is 0% H2O, you must set the maximum (20 mA) point at more than 25% H2O. Setting example 2 If the setting (for a 4 mA current) is 26% H2O, you must set the maximum (20 mA) point at more than 44% H2O, (263 0.8 + 23% H2O). (Numbers after the decimal point are rounded up.) IM 11M12A01-04E 10th Edition : May 19, 2017-00 8-4 <8. Detailed Data Setting> Maximum humidity (for a 20-mA current), % H2O 100 90 Ranges over which oxygen concentrations can be set 80 70 60 Outside ranges 50 40 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Minimum humidity (for a 4-mA current), % H2O F8-2E.ai Figure B Max. and Min. Humidity Set Ranges l “Mixing ratio” setting range The minimum mixing ratio is set to 0 kg/kg or ranges from 0.201 to 0.625 kg/kg. The maximum “mixing ratio” setting ranges from 0.2 to 1.0 kg/kg, and must be greater than 1.3 times plus 0.187 the mixing ratio set for the minimum. Setting example 1 If the setting (for a 4 mA current) is 0 kg/kg, you must set the maximum (20 mA) point at more than 0.2 kg/kg. Setting example 2 If the setting (for a 4 mA current) is 0.201 kg/kg, you must set the maximum (20 mA) point at more than 0.449 kg/kg, (0.201 3 1.3 + 0.187 kg/kg). (Numbers after the decimal point are rounded up.) 1 Ranges over which oxygen concentrations can be set 0.95 Maximum mixing ratio, kg/kg at 20 mA 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 Outside ranges 0.5 0.45 0.4 0.201 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.65 F8-3E.ai Minimum mixing ratio, kg/kg at 4 mA Figure C 0.6 Max. and Min. Mixing Ratio Set Ranges IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8.1.6 8-5 Entering Output Damping Constants If a measured value adversely affected by a rapid change in the sample gas oxygen concentration is used for the control means, frequent on-off actions of the output will result. To avoid this, the converter allows the setting of output damping constants ranging from 0 to 255 seconds. 8.1.7 Selection of Output Mode You can select a linear or logarithmic output mode. The former provides linear characteristics between the analog output signal and measured value. NOTE When you select logarithmic mode, the minimum output remains constant at 0.1% O2, and the humidity remains set to 0.1% H2O and mixing ratio is set to 0.01 kg/kg, regardless of the set values. Set value of C11 to C16 remains unchanged. 8.1.8 Default Values When the analyzer is delivered or data are initialized, the output current settings are by default as shown in Table 8.3. Table 8.3 Output Current Default Values Item 8.2 Default setting Min. oxygen concentration 0% O2 Max. oxygen concentration 25% O2 Minimum humidity 0% H2O Maximum humidity 25% H2O Minimum ratio setting 0 kg/kg Maximum ratio setting 0.2 kg/kg Output damping constant 0 (seconds) Output mode Linear Output Hold Setting The “output hold” functions retain an analog output signal at a preset value during the equipment’s warm-up time or calibration or if an error arises. Table 8.4 shows the analog outputs that can be retained and the individual states. Table 8.4 Analog Output Hold Setting Equipment status During maintenance During calibration Error occurrence (*1) Without hold feature O O O Retains output from just before occurrence O O O O O O Output hold values available During warm-up 4 mA O 20 mA O Set value (2.4 to 21.6 mA) O: *1: O The output hold functions are available. The output hold functions on error occurrence are unavailable when option code “/C2” or “/C3” (NAMER NE 43 compliant) is specified. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8.2.1 8-6 Definition of Equipment Status (1) During warm-up “During warm-up” is the time required after applying power until the sensor temperature stabilizes at 750°C, and the equipment is in the measurement mode. This status is that the sensor temperature is displayed on the basic panel. (2) During maintenance “During maintenance” is the time from when a valid password is entered in the basic panel display to enable the parameter code selection display until the display goes back to the basic panel display (3) During calibration (see Chapter 9, Calibration) In the manual calibration, proceed with the calibration operation with the parameter code 「B10」to display the span gas confirmation display for the first span calibration, thus starting the calibration time when the [ENT] key is touched. After a series of calibrations is complete and the preset output stabilization time has elapsed, the calibration time will be up. Figure 8.1 shows the definition of “during calibration” in the manual calibration. Switch operation ∧ ENT > Display b10 > ∧ ENT CAL > ∧ ENT CAL > ∧ ENT SPAn Y > ∧ ENT 21.00 % > ∧ ENT > ∧ ENT 20.84 % > ∧ ENT ZEro Y > ∧ ENT 0.98 % > ∧ ENT > ∧ ENT 0.89 % > ∧ ENT CALEnd > ∧ ENT > ∧ ENT Figure 8.1 OPEn/20.84 Output hold time during calibration OPEn/0.89 b10 Measured-value display Definition of During Calibration IM 11M12A01-04E 10th Edition : May 19, 2017-00 8-7 <8. Detailed Data Setting> In a semi-automatic calibration, “during calibration” is the time, starting when a calibration instruction is executed with an infrared switch or a contact input, to make a series of calibrations, until the preset output stabilization time elapses. In an automatic calibration, “during calibration” is the time, starting when automatic calibration is carried out at the calibration start time, until the preset output stabilization time elapses. (4) “Error” appears when Error 1 to Error 4 are being issued 8.2.2 Preference Order of Output Hold Value The output hold value takes the following preference order: During error occurrence During calibration During maintenance During warm-up Preference order (high) 8.3.2E.siki For example, if the output current is set to “4 mA” during maintenance, and “without hold” output during calibration is preset, the output is held at 4 mA in the maintenance display. However, the output hold is released at the time of starting the calibration, and the output will be held again at 4 mA after completing the calibration and when the output stabilization time elapses. 8.2.3 Output Hold Setting Table 8.5 lists parameter codes with set values for individual set items. Table 8.5 Parameter Codes for Output Holding Set items Parameter code During warm-up C04 Set value 0 4 mA 1 20 mA 2 Holds Set value During maintenance C05 0 Without hold feature 1 Last measured value. 2 Holds set values. During calibration C06 0 Without hold feature 1 Last measured value. 2 Holds set values. During error occurrence C07 0 Without hold feature 1 Last measured value. 2 Holds set values. Note: “C07” is not displayed when option code “/C2” or “/C3” (NAMUR NE 43 compliant) is specified. 8.2.4 Default Values When the analyzer is delivered, or if data are initialized, output holding is by default as shown in Table 8.6. Table 8.6 Output Hold Default Values Status Output hold (min. and max. values) Preset value During warm-up 4 mA 4 mA Under maintenance Holds output at value just before maintenance started. 4 mA Under calibration or blow-back Holds output at value just before starting calibration 4 mA On Error occurrence Holds output at a preset value. 3.4 mA IM 11M12A01-04E 10th Edition : May 19, 2017-00 8.3 8-8 <8. Detailed Data Setting> Setting Alarms The analyzer enables the setting of four alarms high-high, high, low, and low-low alarms depending upon the oxygen concentration. The following section sets forth the alarm operations and setting procedures. 8.3.1 Alarm Values (1) High-high and high alarm values High-high alarms and high alarms are issued when they are set to be detected with parameter codes “D41” and “D42”, and if the measured values exceed the preset oxygen concentration values specified with “D01” and “D02”. (2) Low and low-low alarm values Low alarms and low-low alarms are issued when they are set to be detected with parameter codes “D43” and “D44”, and if the measured values are lower than the preset oxygen concentration values specified with “D03” and “D04”. 8.3.2 Alarm Output Actions If the measured values of the oxygen concentration fluctuate between normal (steady-state) values and alarm setting, there may be a lot of alarm-output issuing and canceling. To avoid this, set the delay time and allow for hysteresis for alarm canceling under the alarm output conditions, as Figure 8.2 shows. When the delay time is set, an alarm will not be issued so quickly even if the measured value differs from the steady-state and enters the alarm setpoint range. If the measured value remains within the alarm setpoint range for a certain period of time (for the preset delay time), an alarm will result. On the other hand, there will be a similar delay each time the measured value returns to the steady state from the alarm setpoint range (canceling the alarm status). If hysteresis is set, alarms will be canceled when the measured value is less than or more than the preset hysteresis values. If both the delay time and hysteresis are set, an alarm will be issued if the measured value is in the alarm setpoint range and the delay time has elapsed. When the alarm is reset (canceled), it is required that the measured value be beyond the preset hysteresis value and that the preset delay time. Refer to Figure 8.2 for any further alarm output actions. The delay time and hysteresis settings are common to all alarm points. Alarm range A B C D 7.5% High alarm setpoint Hysteresis 2.0% 5.5% Oxygen concentration Delayed time: Delayed time: 5 seconds 5 seconds Delayed time: 5 seconds Alarm output ON OFF Figure 8.2 F8.2E.ai Alarm Output Action In the example in Figure 8.2, the high alarm point is set to 7.5% O2, the delayed time is set to five seconds, and hysteresis is set to 2% O2. Alarm output actions in this figure are expressed as follows: (1) Although oxygen concentration measurement “A” has exceeded the high alarm setpoint, “A” falls lower than the high alarm setpoint before the preset delayed time of five seconds elapses. So, no alarm is issued. (2) Oxygen concentration measurement “B” exceeds the high alarm setpoint and the delayed time has elapsed during that measurement. So, an alarm results. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-9 (3) Although oxygen concentration measurement “C” has fallen lower than the hysteresis set value, that measurement exceeds the hysteresis set value before the preset delayed time has elapsed. So, the alarm is not canceled. (4) Oxygen concentration measurement “D” has fallen below the hysteresis set value and the preset delayed time during measurement has elapsed, so the alarm is canceled. 8.3.3 Alarm Setting Set the alarm setpoints following Table 8.7 listing parameter codes. Table 8.7 Parameter Codes for Alarms Set item Oxygen concentration high-high alarm setpoint Oxygen concentration high alarm setpoint Oxygen concentration low alarm setpoint Oxygen concentration low-low alarm setpoint Humidity high-high alarm setpoint Humidity high alarm setpoint Humidity low alarm setpoint Humidity low-low alarm setpoint Mixing ratio high-high alarm setpoint Mixing ratio high alarm setpoint Mixing ratio low alarm setpoint Mixing ratio low-low alarm setpoint Oxygen concentration alarm hysteresis Humidity alarm hysteresis Mixing ratio alarm hysteresis Delayed alarm action Oxygen concentration high-high alarm detection Parameter code D01 D02 D03 D04 D05 D06 D07 D08 D11 D12 D3 D14 D30 D31 D32 D33 D41 Oxygen concentration high alarm detection D42 Oxygen concentration low alarm detection D43 Oxygen concentration low-low alarm detection D44 Humidity high-high alarm detection D45 Humidity high alarm detection D46 Humidity low alarm detection D47 Humidity low-low alarm detection D48 Mixing ratio high-high alarm detection D51 Mixing ratio high alarm detection D52 Mixing ratio low alarm detection D53 Mixing ratio low-low alarm detection D54 Set value 0-100% O2 0-100% O2 0-100% O2 0-100% O2 0-100% H2O 0-100% H2O 0-100% H2O 0-100% H2O 0-1 kg/kg 0-1 kg/kg 0-1 kg/kg 0-1 kg/kg 0-9.9% O2 0-9.9% H2O 0-0.1 kg/kg 0-255 seconds 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected 0 Not detected 1 Detected IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-10 CAUTION Even with alarms set, if “Not detected” has been set in the above alarm detection, no alarm is issued. Be sure to set “Detected” in the above alarm detection if you use alarm features. 8.3.4 Default Values When the analyzer is delivered, or if data are initialized, the default alarm set values are as shown in Table 8.8. Table 8.8 Alarm Setting Default Values Set item 8.4 Set value Oxygen concentration high-high alarm setpoint 100% O2 Oxygen concentration high alarm setpoint 100% O2 Oxygen concentration low alarm setpoint 0% O2 Oxygen concentration low-low alarm setpoint 0% O2 Humidity high-high alarm setpoint 100% H2O Humidity high alarm setpoint 100% H2O Humidity low alarm setpoint 0% H2O Humidity low-low alarm setpoint 0% H2O Mixing ratio high-high alarm setpoint 1 kg/kg Mixing ratio high alarm setpoint 1 kg/kg Mixing ratio low alarm setpoint 0 kg/kg Mixing ratio low-low alarm setpoint 0 kg/kg Oxygen concentration alarm hysteresis 0.1% O2 Humidity alarm hysteresis 0.1% H2O Mixing ratio alarm hysteresis 0.001 kg/kg Delayed alarm action 3 seconds High-high alarm detection Not detected High alarm detection Not detected Low alarm detection Not detected Low-low alarm detection Not detected Output Contact Setup 8.4.1 Output Contact Mechanical relays provide contact outputs. Be sure to observe relay contact ratings. (For details, see Section 2.1, “General Specifications.”) The following sets forth the operation mode of each contact output. Output contact 1 you can select open or closed contact when the contact is “operated”. For output contact 2, contact is closed. The relay for output contact 1 is energized when its contacts are closed and vice versa. Accordingly, when no power is supplied to the equipment, those contacts remain open. In addition, the relay for output contact 2 is energized when the corresponding contact is open and de-energized when that contact is closed. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> Table 8.9 Setting Output Contacts Operating state When no power is applied to this equipment Output contact 1 Open (de-energized) or closed (energized) selectable. Open Output contact 2 Closed (de-energized) only. 8.4.2 8-11 Closed Setting Output Contact Set the output contacts following Table 8.10. Table 8.10 Parameter Codes for Output Contact Setting Set item Output contact 1 Operation Parameter code E10 Error E20 High-high alarm E21 High alarm E22 Low alarm E23 Low-low alarm E24 Maintenance E25 Calibration E26 Measurement range change E27 Warm-up E28 Calibration gas pressure decrease E29 Unburnt gas detection E32 Note 1: Note 2: Note 3: Note 4: Note 5: Set value 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Operated in closed status. (Normally de-energized) Operated when open. (Normally energized) (Note 1) Not operated if an error occurs. Operated if an error occurs. Not operated if a high-high alarm occurs. Operated if a high-high alarm occurs. (Note 2) Not operated if a high alarm occurs. Operated if a high alarm occurs. (Note 2) Not operated if a low alarm occurs. Operated if a low alarm occurs. (Note 2) Not operated if a low-low alarm occurs. Operated if a low-low alarm occurs. (Note 2) Not operated during maintenance. Operated during maintenance (see Section 8.3.1). Not operated during calibration. Operated during calibration (see Section 8.3.1). Not operated when changing ranges. Operated when changing ranges. (Note 3) Not operated during warming up. Operated during warming up. Not operated while a calibration gas pressure decrease contact is being closed. 1 Operated while a calibration gas pressure decrease contact is being closed. (Note 4) 0 Not operated while a unburnt gas detection contact is being closed. 1 Operated while a unburnt gas detection contact is being closed. (Note 5) Output contact 2 remains closed. The oxygen concentration alarm must be preset (see Section 8.4). Range change answer-back signal. For this action, the range change must be preset during the setting of input contacts (see Section 8.6). Calibration gas pressure decrease answer-back signal. Calibration gas pressure decrease must be selected beforehand during the setting of input contacts. Non-combusted gas detection answer-back signals. “Non-combusted gas” detection must be selected during the setting of input contacts. WARNING Output contact 2 is linked to the detector’s heater power safety switch. As such, if output contact 2 is on, the heater power stops and an Error 1 (cell voltage abnormal) or Error 2 (heater temperature abnormal) occurs. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8.4.3 8-12 Default Values When the analyzer is delivered, or if data are initialized, output contacts are by default as shown in Table 8.11. Table 8.11 Output Contact Default Settings Item Output contact 1 Output contact 2 High-high alarm High alarm Low alarm Low-low alarm Error O Warm-up O Output range change Calibration Maintenance O High limit temperature alarm Calibration gas pressure decrease Unburnt gas detection Operating contact status Open Closed (fixed) O: Present NOTE The above blank boxes indicate the items have been set off. 8.5 Input Contact Settings 8.5.1 Input Contact Functions The converter input contacts execute set functions by accepting a remote (contact) signal. Table 8.12 shows the functions executed by a remote contact signal. Table 8.12 Input Contact Functions Set item Function Calibration gas pressure decrease While a contact signal is on, neither semi-automatic nor automatic calibrations can be made. Measuring range change While contact input is on, the analog output range is switched to 0-25% O2. Calibration start If a contact signal is applied, semi-automatic calibration starts (only if the semiautomatic or automatic mode has been setup). Contact signal must be applied for at least one second. Even though a continuous contact signal is applied, a second calibration cannot be made. If you want to make a second calibration, turn the contact signal off and then back on. Unburnt gas detection If a contact signal is on, the heater power will be switched off. (An one-to 11-second time interval single-output signal is available as a contact signal.) If this operation starts, the sensor temperature decreases and an error occurs. To restore it to normal, turn the power off and then back on, or reset the analyzer. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-13 CAUTION • Measurement range switching function by an external contact input is available for analog output 1 only and the range is fixed to 0-25%O2. • To conduct a semi-automatic calibration, be sure to set the Calibration setup mode to “Semiautomatic” or “Automatic”. 8.5.2 Setting Input Contact To set the input contacts, follow the parameter codes given in Table 8.13. Table 8.13 Parameter Codes for Input Contact Settings Set item Parameter code Input contact 1 (function) E01 Set value 0 Invalid 1 Calibration gas pressure decrease 2 Measuring range change 3 Calibration 4 Unburnt gas detection Input contact 2 (function) E02 0 Invalid 1 Calibration gas pressure decrease 2 Measuring range change 3 Calibration 4 Unburnt gas detection Input contact 1 (action) E03 Input contact 2 (action) E04 0 Operated when closed 1 Operated when open 0 Operated when closed 1 Operated when open 8.5.3 Default Values When the analyzer is delivered, or if data are initialized, the input contacts are all open. 8.6 Other Settings 8.6.1 Setting the Date-and-Time The following describe how to set the date-and-time. Automatic calibration works following this setting. Use parameter code “F10” to set the date-and-time. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> Table 8.14 Data-and-time Settings Switch operation Display Description > > ∧ ∧ ENT > ∧ ENT 00.01.01 > ∧ ENT 00.06.01 Touch the [∧] key to change to 6. > ∧ ENT 00.06.01 Touch the [>] key to move the position of the digit that is flashing to the right one digit. > ∧ ENT 00.06.21 Touch the [∧] key to change to 2. > ∧ ENT 00.06.21 Touch the [>] key to move the position of the digit that is flashing to the right one digit. > ∧ ENT 07.18 > ∧ ENT 14.30 > ∧ ENT 14.30 > ∧ ENT 14.30 > ∧ ENT F10 The symbol ( 8.6.2 8-14 ENT F10 00.01.01 Select the parameter code F10. If you touch the [ENT] key, the current date will be displayed. The display on the left indicates the date - January 1, 2000. To set June 21, 2000, follow the steps below: Touch the [>] key to move the position of the digit that is flashing to the right. Let the rightmost character flash, and touch the [>] key to display the time. Continuously touch the [>] key, then the date and time are alternately displayed. Displayed on the left is 7:18 a.m. Omitted here. Touch the [∧] key and enter the current time in same way as the date has been entered, on a 24-hour basis. 2:30 p.m. Displayed on the left means 2:40 p.m. If you touch the [ENT] key, all the digits flash. Touch the [ENT] key again to set the time. If you touch the [>] and [ENT] keys together, the parameter code selection display appears. ) indicates that the corresponding keys are being touched, and the light characters indicate flashing. Setting Periods over which Average Values are Calculated and Periods over which Maximum and Minimum Values Are Monitored The equipment enables the display of oxygen concentration average values and maximum and minimum values under measurement (see Section 10.1, later in this manual). The following section describes how to set the periods over which oxygen concentration average values are calculated and maximum and minimum values are monitored. n Procedure Use the parameter-code table below to set the average, maximum and minimum oxygen concentration values. Periods over which average is calculated and periods over which maximum and minimum values are monitored can be set, ranging from 1 to 255 hours. If the set ranges are beyond the limits specified, an “Err” will be displayed. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> Table 8.15 8-15 Parameter Codes for Average, Maximum and Minimum Values Set item Parameter code Set range Units Periods over which average values are calculated F11 1 to 255 Hours Periods over which maximum and minimum values are monitored F12 1 to 255 Hours n Default Value When the analyzer is delivered, or if data are initialized, periods over which average values are calculated are set to one hour, and periods over which maximum and minimum values are monitored are set to 24 hours. 8.6.3 Setting Fuels n Input Parameters The analyzer calculates the moisture content contained in exhaust gases. The following sets forth the fuel parameters necessary for calculation and their entries. The moisture quantity may be mathematically expressed by: (water vapor caused by combustion and water vapor contained in the exhaust gas) Moisture quantity = + (water vapor contained in air for combustion) actual exhaust gas(including water vapor) per fuel = Gw + Gw1 G = Gw + (1.61 x Z x m x Ao) Go + Gw + (m - 1) Ao + (1.61 x Z x m x Ao) . =. Gw + (1.61 x Z x m x Ao ) X + Ao x m x 100 ..... Equation 1 x 100 x 100 ............ Equation 2 x 100 where, Ao : Theoretical amount of air per unit quantity of fuel, m3 /kg (or m3 /m3 ) ............ 2 in Table 8.16 G: Actual amount of exhaust gas (including water vapor) per unit quantity of fuel, m3/kg (or m3 /m3) Gw : Water vapor contained in exhaust gas per unit quantity of fuel (by hydrogen and moisture content in fuel), m3 /kg (or m3 /m3 ) ............ 1 in Table 8.16 Gw1: Water vapor contained in exhaust gas per unit quantity of fuel (moisture content in air), m3 /kg (or m3 /m3 ) Go: Theoretical amount of dry exhaust gas per unit quantity of fuel, m3 /kg (or m3 /m3 ) m: Air ratio X : Fuel coefficient determined depending on low calorific power of fuel, m3 /kg (or m3 /m3 ) ... 3 in Table 8.16 Z : Absolute humidity of the atmosphere, kg /kg ....... Figure 8.4 Fill in the boxes with fuel parameters in Equation 2 above to calculate the moisture content. Use Ao, Gw and X shown in Table 8.16. If there are no appropriate fuel data in Table 8.16, use the following equations for calculation. Find the value of “Z” in Equations 1 and 2 using Japanese Standard JIS B 8222. If a precise measurement is not required, obtain the value of “Z” using a graph for the absolute humidity indicated by a dry and wet bulb hygrometer. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-16 For liquid fuel Amount of water vapor in exhaust gas (Gw) = (1/100) {1.24 (9h + w)} (m3 /kg) (m3 /kg) Theoretical amount of air (Ao) = 12.38 x (Hl/10000) – 1.36 Low calorific power = Hl X value = (3.37 / 10000) x Hx – 2.55 (m 3 /kg) where, Hl: low calorific power of fuel h: Hydrogen in fuel (weight percentage) w: Moisture content in fuel (weight percentage) Hx: Same as numeric value of Hl For gas fuel Amount of water vapor in exhaust gas (Gw) = (1/100) {(h2) + 1/2 ∑y (Cx Hy) + wv} (m3 /m 3 ) Theoretical amount of air (Ao) = 11.2 x (Hl/10000) (m3 /m3 ) Low calorific power = Hl X value = (1.05 / 10000) x Hx where, 3 3 (m /m ) Hl: low calorific power of fuel CxHy: Each hydrocarbon in fuel (weight percentage) h2: Hydrogen in fuel (weight percentage) wv: Moisture content in fuel (weight percentage) Hx: Same as numeric value of Hl For solid fuel Amount of water vapor in exhaust gas (Gw) = (1/100) {1.24 (9h + w)} (m3 /kg) Theoretical amount of air (Ao) = 1.01 x (Hl / 1000) + 0.56 3 (m /kg) Low calorific power = Hl = Hh – 25 (9h + w) (kJ/kg) X value = 1.11 - (0.106 / 1000 ) x Hx where, 3 3 (m /m ) w: Total moisture content in use (weight percentage) h: Hydrogen content (weight percentage) The average hydrogen content of coal mined in Japan, which is a dry ash-free type, is 5.7 percent. Accordingly, "h" may be expressed mathematically by: h = 5.7 [{100 – (w + a)} / 100] x (100 – w) / (100 – w1) where, a: Ash content (%) w1: Moisture content (%), analyzed on a constant humidity basis Hh: Higher calorific power of fuel (kJ/kg) Hl: Low calorific power of fuel (kJ/kg) Hx: Same numeric value of Hl IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-17 40 39 0.046 38 0.044 0.042 37 0.040 36 0.038 35 0.036 34 0.034 33 0.032 32 0.030 31 0.028 30 Wet-bulb temperature, °C 29 0.026 Absolute 28 0.024 27 26 0.022 25 0.020 24 0.018 22 20 0.016 18 0.014 16 0.012 14 12 4 2 0 8 6 humidity, kg/kg 0.010 10 0.008 0.006 0.004 -2 0.002 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Dry-bulb temperature, °C Figure 8.3 38 40 0.000 F8.4E.ai Absolute Humidity of Air IM 11M12A01-04E 10th Edition : May 19, 2017-00 8-18 <8. Detailed Data Setting> Table 8.16 Fuel Data • For liquid fuel Fuel properties Specific weight kg/l Type Chemical component (weight percentage) C H O S w Ash Higher Lower content order order Theoretical amount of air for combustion Nm3/kg Amount of combustion gas Nm3/kg X value N2 Total CO2 H2O SO2 Kerosene 0.78~ 85.7 14.0 0.83 0.5 0.0 0.0 46465 43535 11.4 1.59 1.56 0.00 9.02 12.17 0.96 Light oil 0.81~ 85.6 13.2 0.84 1.2 0.0 0.0 45879 43032 11.2 1.59 1.47 0.00 8.87 11.93 0.91 0.5 0.5 0.3 0.05 45544 42739 10.9 1.60 1.34 0.00 8.61 11.55 0.89 0.5 2.0 0.4 0.05 45125 42320 10.8 1.58 1.32 0.01 8.53 11.44 0.86 0.4 3.0 0.5 0.05 43827 41274 10.7 1.58 1.27 0.02 8.44 11.31 0.77 0.4 1.5 0.5 0.1 43952 41441 10.7 1.61 1.22 0.01 8.43 11.27 0.79 0.5 0.4 3.5 0.5 0.1 43116 40646 10.5 1.58 1.20 0.02 8.32 11.12 0.72 0.5 0.4 1.5 0.6 0.1 43660 41190 10.7 1.61 1.22 0.01 8.43 11.27 0.77 83.0 10.5 0.5 0.4 3.5 2.0 0.1 43032 40604 10.3 1.55 1.18 0.02 8.18 10.93 0.72 0.85~ 85.9 12.0 0.7 Heavy No.1 0.88 oil A class No.2 0.83~ 84.6 11.8 0.7 1 0.89 B Heavy oil class 2 0.90~ 84.5 11.3 0.4 0.93 No.1 0.93~ 0.95 86.1 10.9 0.5 Heavy No.2 0.94~ 84.4 10.7 0.96 oil C class 3 No.3 0.92~ 86.1 10.9 1.00 No.4 0.94~ 0.97 • N Calorific power kJ/kg 1 2 For gas fuel Theoretical amount of air Fuel properties Specific Type 3 weight kg/Nm3 Chemical component (weight percentage) CO H2 CO2 CH4 CmHn O2 Coke oven gas 0.544 9.0 50.5 2.6 25.9 3.9 Blast furnace gas 1.369 25.0 2.0 20.0 Natural gas 0.796 Propane 2.030 Butane 2.530 0.1 Theoretical amount of air for combustion Lower Nm3/m3 Combustion product, Nm3/ m3 Calorific power kJ/Nm3 N2 8.0 order 20428 18209 Total 4.455 0.45 1.10 3.60 5.15 0.46 0.08 3349 0.603 0.45 0.02 1.01 1.48 9.015 0.98 1.88 7.17 10.03 0.86 C3H8 90%, C4H10 10% 102055 93976 24.63 3.10 4.10 19.5 26.7 2.36 C3H8 10%, C4H10 90% 125496 115868 30.37 3.90 4.90 24.0 32.8 2.91 1.0 1.89 2.89 0.27 1.6 4.2 3391 CO2 H2O N2 37883 34074 2.0 88.4 3.2 53.0 Higher order X value (Molecular Formula) (Gases) Oxygen 1.43 O2 Nitrogen 1.25 N2 Hydrogen 0.09 H2 12767 10758 2.390 Carbon monoxide 1.25 CO 12642 12642 2.390 1.0 1.89 2.89 0.32 Carbon dioxide 1.96 CO2 Methane 0.72 CH4 39750 35820 9.570 1.0 2.0 7.57 10.6 0.90 Ethane 1.34 C 2H 6 69638 63744 16.74 2.0 3.0 13.2 18.2 1.60 Ethylene 1.25 C 2H 4 62991 59060 14.35 2.0 2.0 11.4 15.4 1.48 Propane 1.97 C 3H 8 99070 91255 23.91 3.0 4.0 18.9 25.9 2.29 Butane 2.59 C4H10 128452 118623 31.09 4.0 5.0 24.6 33.6 2.98 2 1 3 T8.8E.ai IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-19 n Procedure Use the parameter code table below to set fuel values. Table 8.17 Setting Fuel Values Set item Parameter code Set value Engineering units Amount of water vapor in exhaust gas F20 0 to 5 m3/kg (m3) Theoretical amount of air F21 1 to 20 m3/kg (m3) X value F22 0 to 19.99 Absolute humidity of the atmosphere F23 O to 1 kg/kg n Default Values When the analyzer is delivered, or if data are initialized, parameter settings are by default, as shown in Table 8.18. Table 8.18 Default Settings of Fuel Values Item Default setting Amount of water vapor in exhaust gas 1.00 m3/kg (m3) Theoretical amount of air 1.00 m3/kg (m3) X value 1.00 Absolute humidity of the atmosphere 8.6.4 0.1000 kg/kg Setting Measurement Gas Temperature and Pressure The analyzer calculates the moisture content contained in exhaust gases and saturated water vapors from the entered gas temperature and pressure to obtain the relative humidity and dew point. Enter the exhaust gas temperature and pressure (absolute pressure) necessary for the calculation (see Section 10.1 later in this manual). NOTE The critical temperature of the saturated water vapor pressure is 374°C. If a gas temperature exceeding 370°C is entered, no correct calculation will be obtained. n Procedure To set the gas temperature and pressure, follow the parameter code table for fuel setting. If you set a value exceeding the setting ranges, an error, ERR will result. Table 8.19 Fuel Setting Default Value Set item Parameter code Set value Engineering units Exhaust gas temperature F13 0 to 3000 °C Exhaust gas pressure F14 0 to 300 kPa abs. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <8. Detailed Data Setting> 8-20 n Default Values When the analyzer is delivered or data are initialized, the parameters are by default as shown in Table 8.20. Table 8.20 Parameter Codes for Exhaust Gas Temperature and Pressure Settings Item Default setting Exhaust gas temperature 300°C Exhaust gas pressure 8.6.5 101.33 kPa abs. Setting Purging Purging is to remove condensed water in the calibration gas pipe by supplying a span calibration gas for a given length of time before warm-up of the detector. This prevents cell breakage during calibration due to condensed water in the pipe. Open the solenoid valve for the automatic calibration span gas during purging and after the purge time has elapsed, close the valve to start warm-up. Purging is enabled when the cell temperature is 100°C or below upon power up and the purge time is set in the range of 1 to 60 minutes. Displayed alternately F8.5.ai Figure 8.4 Display during Purging n Procedure Use the parameter-code table below to set the purging time. The allowable input ranges from 0 to 60 minutes. Table 8.21 Set item Purging time Purging Time Parameter code Set range Units F15 0 to 60 minutes n Default Value When the analyzer is delivered, or if data are initialized, purging time is set to 0 minutes. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <9. Calibration> 9-1 9. Calibration 9.1 Calibration Briefs 9.1.1 Principle of Measurement with a zirconia oxygen analyzer This section sets forth the principles of measurement with a zirconia oxygen analyzer before detailing calibration. A solid electrolyte such as zirconia allows the conductivity of oxygen ions at high temperatures. Therefore, when a zirconia-plated element with platinum electrodes on both sides is heated up in contact with gases having different oxygen partial pressures on each side, the element shows the action of the concentration cell. In other words, the electrode in contact with a gas with a higher oxygen partial pressure acts as a negative electrode. As the gas comes in contact with the zirconia element in this negative electrode, oxygen molecules in the gas acquire electrons and become ions. Moving in the zirconia element, they eventually arrive at the positive electrode on the opposite side. There, the electrons are released and the ions return to the oxygen molecules. This reaction is indicated as follows: Negative electrode: O2 + 4e 2 O 2 Positive electrode: 2 O 2O2 + 4 e The electromotive force E (mV) between the two electrodes, generated by the reaction, is governed by Nernst’s equation as follows: E = -RT/nF ln Px/Pa......................................................Equation (1) where, R: Gas constant T: Absolute temperature n: 4 F: Faraday’s constant Px: Oxygen concentration in a gas in contact with the negative zirconia electrode (%) Pa: Oxygen concentration in a gas in contact with the positive zirconia electrode (%) Assuming the zirconia element is heated up to 750°C, then we obtain equation (2) below: E = -50.74 log Px/Pa......................................................Equation (2) With this analyzer, the sensor (zirconia element) is heated up to 750°C, so Equation (2) is valid. At that point, the relationship as in Figure 9.1 is effected between the oxygen concentration of the measurement gas in contact with the positive electrode and the electromotive force of the sensor (cell), where a comparison gas of air is used on the negative electrode side. IM 11M12A01-04E 10th Edition : May 19, 2017-00 9-2 <9. Calibration> 120 100 0.51 vol%O2,81.92mV(Zero origin of calibration) 80 Cell voltage (mV) 60 40 20 21.0 vol%O2, 0mV (Span origin of calibration) 0 -20 -40 0.1 0.5 1 5 10 21.0 50 Oxygen concentration (vol % O2) Figure 9.1 100 F9.1E.ai Oxygen Concentration in a Measurement Gas vs. Cell Voltage (21 vol%O2 Equivalent) The measurement principles of a zirconia oxygen analyzer have been described above. However, the relationship between oxygen concentration and the electromotive force of a cell is only theoretical. Usually, in practice, a sensor shows a slight deviation from the theoretical value. This is the reason why calibration is necessary. To meet this requirement, an analyzer calibration is conducted so that a calibration curve is obtained, which corrects the deviation from the theoretical cell electromotive force. 9.1.2 Measurement Principle of Zirconia Humidity Analyzer A solid electrolyte such as zirconia allows the conduction of oxygen ions at high temperatures. Therefore, when a zirconia-plated element with platinum electrodes on both sides is heated up in contact with gases having different partial-oxygen pressures on each side, oxygen ions flow from a high partial-oxygen pressure to a low partial-oxygen pressure, causing a voltage. When a sample gas introduced into the zirconia-plated element with the measurement electrode, and air (21.0 vol % O2) is flowed through the reference electrode, an electromotive force (mV) is produced between the two electrodes, governed by Nernst’s equation as follows: E = - RT/nF log e y/a ………………………… Equation (1) where, R = Gas constant T = Absolute temperature n: 4 F = Faraday’s constant y = O2 vol % on the zirconia element measurement electrode a = O2 vol % to 21.0 vol % O2 on the zirconia element reference electrode The humidity analyzer uses a sample gas composed of water vapor and air. (A) For the vol % H2O measurement x:Assuming that H2O vol % in a mixed gas is measured: y = (100 – x) 3 0.21 …………………. Equation (2) IM 11M12A01-04E 10th Edition : May 19, 2017-00 9-3 <9. Calibration> From the above equations (1) and (2), we obtain: E = -K log y/a = -Klog [(100 – x) 30.21] /21 = - K log (1 –0.01 x) ……………… Equation (3) where, K = Constant Using the above equation (3), we can calculate the water vapor in vol % from the electromotive force. Zirconia element Comparison water vapor Sample gas + H 2O - Electrode Air 100% Water vapor 100% H2O x% 79% 100% concentration indicator N2 O2 y% 21% Sample gas composition F9-1E.ai Figure 9.2 Schematic Diagram of Measurement Principle (B) For the “mixing ratio” measurement Assuming that the mixing ratio is rkg/kg, then “r” can be calculated from the value of H2O vol % as follows: r = 0.622 3 x/(100 – x) …………… Equation (4) From the above equations (1), (2) and (4), we obtain: E = -K log y/a = -K log 50.622 3 21/(0.622 + r)/216 = -K log 0.622/(0.622 + r) … …… Equation (5) where, K = Constant With Equation (5), we can obtain the mixing ratio rkg/kg from the electromotive force. 120 Cell output, mV E = -50.74 log PX/20.6 100 80 60 40 20 0 0.1 1 10 100 Oxygen concentration PX (%O2) Oxygen concentration vs. cell output F9-2E.ai Figure 9.3 IM 11M12A01-04E 10th Edition : May 19, 2017-00 <9. Calibration> 100 1.0 80 Mixing ratio, kg/kg 0.9 0.8 70 0.7 60 0.6 50 0.5 40 0.4 30 0.3 20 0.2 10 0.1 0 0 1 2 3 4 5 6 kg/kg Humidity, vol % H2O Mixing ratio 90 Humidity, vol % H2O 9-4 0.0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Oxygen concentration, vol % O2 Oxygen concentration vs. Humidity, Mixing ratio F9-3E.ai Figure 9.4 9.1.3 Calibration Gas A gas with a known oxygen concentration is used for calibration. Normal calibration is performed using two different gases: a zero gas of low oxygen concentration and a span gas of high oxygen concentration. In some cases, only one of the gases needs to be used for calibration. However, even if only one of the gases is normally used, calibration using both gases should be done at least once. The zero gas normally used has an oxygen concentration of 0.95 to 1.0 vol%O2 with a balance of nitrogen gas (N2). The span gas widely used is clean air (at a dew-point temperature below -20°C and free of oily mist or dust, as in instrument air). 9.1.4 Compensation The deviation of a measured value from the theoretical cell electromotive force is checked by the method in Figure 9.5 or 9.6. Figure 9.5 shows a two-point calibration using two gases: zero and span. Cell electromotive forces for a span gas with an oxygen concentration p1 and a zero gas with an oxygen concentration p2 are measured while determining the calibration curve passing between these two points. The oxygen concentration of the sample gas is determined from this calibration curve. In addition, the calibration curve corrected by calibration is compared with the theoretical calibration curve for determining the zero correction ratio represented by B/A x 100 (%) on the basis of A, B and C shown in Figure 9.5 and a span correction ratio of C/A x 100 (%). If the zero correction ratio exceeds the range of 100 ± 30% or the span correction ratio becomes larger than 0 ± 18%, calibration of the sensor becomes impossible. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <9. Calibration> 81.92 9-5 Zero origin ez e2 Cell electromotive force, mV Calibration curve before correction e1 es B A Corrected calibration curve (theoretical calibration curve) C 0 21.0 p1 Span gas concentration Span origin p2 0.51 Zero gas concentration Oxygen concentration (vol%O2) Zero correction ratio = (B/A) x 100 (%) Span correction ratio = (C/A) x 100 (%) Correctable range: 100 ± 30% Correctable range: 0 ± 18% F9.2E.ai Figure 9.5 Calculation of a Two-point Calibration Curve and Correction Ratios Using Zero and Span Gases Figure 9.6 shows a one-point calibration using only a span gas. In this case, only the cell electromotive force for a span gas with oxygen concentration p1 is measured. The cell electromotive force for the zero gas is carried over from a previous measurement to obtain the calibration curve. The principle of calibration using only a span gas also applies to the one-point calibration method using a zero gas only. 81.92 Zero origin ez Cell electromotive force, mV e1 es Calibration curve before correction Previous zero gas data B A Corrected calibration curve (theoretical calibration curve) C 0 21.0 p1 Span gas concentration 0.51 Span origin Oxygen concentration (vol%O2) Zero correction ratio = (B/A) x 100 (%) Span correction ratio = (C/A) x 100 (%) Correctable range: 100 ± 30% Correctable range: 0 ± 18% F9.3E.ai Figure 9.6 9.1.5 Calculation of a One-point Calibration Curve and Correction Ratios Using a Span Gas Characteristic Data from a Sensor Measured During Calibration During calibration, calibration data and sensor status data (listed below) are acquired. However, if the calibration is not properly conducted (an error occurs in automatic or semi-automatic calibration), these data are not collected in the current calibration. These data can be observed using parameter codes “A20” to “A22”, and “A50” to “A79”. For an explanation and the operating procedures of individual data, consult Section 10.1, “Detailed Display.” (1) Record of span correction ratio Recorded the past ten span correction ratios. (2) Record of zero correction ratio Recorded the past ten zero correction ratios. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <9. Calibration> 9-6 (3) Response time You can monitor the response time provided that a two-point calibration has been done in semi-automatic or automatic calibration. (4) Cell’s internal resistance The cell’s internal resistance gradually increases as the cell (sensor) deteriorates. You can monitor the values measured during the latest calibration. However, these values include the cell’s internal resistance and other wiring connection resistance. So, the cell’s degrading cannot be estimated from these values only. When only a span calibration has been made, these values will not be measured, and previously measured values will remain. (5) Robustness of a cell The robustness of a cell is an index for predicting the remaining life of a sensor and is expressed in a number on four levels. 9.2 Calibration Procedures NOTE Calibration should be made under normal operating conditions (if the probe is connected to a furnace, the analyzer will undergo calibration under the operating conditions of the furnace). To make a precise calibration, conduct both zero and span calibrations. The following sets forth the required calibration settings: 9.2.1 Mode There are three calibration modes available: (1) Manual calibration which allows zero and span calibrations or either one manually in turn; (2) Semi-automatic calibration which lets calibration start with the touch panel or a contact input, and undergoes a series of calibration operations following preset calibration periods and stabilization time. (3) Automatic calibration which is carried out automatically following preset calibration periods. Calibrations are limited by the following mode selection: • When Manual calibration is selected: Manual calibration only can be conducted. (This mode does not allow semi-automatic calibration with a contact input nor automatic calibration even when its start-up time has reached.) • When Semi-automatic calibration is selected: This mode enables manual and semi-automatic calibrations to be conducted. (The mode, however, does not allow automatic calibration even when its start-up time has reached.) • When Automatic calibration is selected: This calibration can be conducted in any mode. 9.2.2 Calibration Procedure Select both span and zero calibrations or span calibration only or zero calibration only. Usually select span and zero calibrations. IM 11M12A01-04E 10th Edition : May 19, 2017-00 9.2.3 <9. Calibration> 9-7 Zero gas Concentration Set the oxygen concentration for zero calibration. Enter the oxygen concentration for the zero gas in the cylinder used. 9.2.4 Span gas Concentration Set the oxygen concentration for span calibration. If instrument air is used as the span gas, enter 21 %O2. When using the ZO21S Standard Gas Unit (for use of the atmospheric air as a span gas), use a hand-held oxygen analyzer to measure the actual oxygen concentration, and then enter it. NOTE • When instrument air is used for the span calibration, remove the moisture from the instrument air at a dew-point temperature of -20°C and also remove any oily mist and dust from that air. • If dehumidifying is not enough, or if foul air is used, the measurement accuracy will be adversely affected. 9.2.5 Calibration Time • When the calibration mode is in manual: First set the hold (output stabilization) time. This indicates the time required from the end of calibration to entering a measurement again. This time, after calibration, the measurement gas enters the sensor to set the time until the output returns to normal. The output remains held after completing the calibration operation until the hold (output stabilization) time elapses. The calibration time set ranges from 00 minutes, 00 seconds to 60 minutes, 59 seconds. For more details, consult Section 8.2,”Output Hold Setting.” When the calibration mode is in semi-automatic, set the hold (output stabilization) time and calibration time. The calibration time is the time required from starting the flow of the calibration gas to reading out the measured value. The set calibration time is effective in conducting both zero and span calibrations. The calibration time set ranges from 00 minutes, 00 seconds to 60 minutes, 59 seconds. Figure 9.7 shows the relationship between the calibration time and hold (output stabilization) time. Calibration start (contact or switch input) Span calibration (span gas valve open) Zero calibration (zero gas valve open) Analog output status Calibration time Calibration time Hold (output stabilization) time Analog output remains hold (when output remains hold) Figure 9.7 F9.4E.ai Calibration and Hold (Output stabilization) Time Settings IM 11M12A01-04E 10th Edition : May 19, 2017-00 9-8 <9. Calibration> • When the calibration mode is in automatic: In addition to the above hold (output stabilization) time and calibration time, set the interval, start date, and start time. Interval means the calibration intervals ranging from 000 days, 00 hours to 255 days, 23 hours. Set the first calibration day and the start-calibration time to the start date and start time respectively. After the first calibration is carried out, the next calibration will be executed according to the preset calibration intervals. n Setting When setting calibration timing requirements, bear the following precautions in mind: NOTE (1) If the calibration interval is shorter than the sum of hold (output stabilization) time plus calibration time, the second calibration start time will conflict with the first calibration. In such a case, the second calibration will not be conducted. (When both zero and span calibrations are to be performed, the calibration time is double that required for a single (zero or span) calibration.) (2) For the same reason, if the calibration start time conflicts with manual calibration or semiautomatic calibration, the current calibration will not be conducted. (3) If the calibration time conflicts with maintenance service operation, calibration will start after completing the maintenance service operation (see Section 8.2.1, earlier in this manual). (4) If 000 days, 00 hours are set for the calibration intervals, only the first calibration will be conducted; a second or later calibration will not be conducted. (5) If a past date is set to the calibration start day, no calibration will be conducted. Table 9.1 Parameter Codes for Calibration Setting Set Item Parameter code Engineering unit Set value Zero gas concentration B01 Set Zero gas concentration %O2 Span gas concentration B02 Set Span gas concentration %O2 Calibration mode B03 0 Manual calibration 1 Semi-automatic and manual 2 Automatic, semi-automatic, and manual Hold (Output stabilization) time B04 0 minutes 0 seconds to 60 minutes 59 seconds MM.SS Calibration time B05 0 minutes 0 seconds to 60 minutes 59 seconds MM.SS Calibration interval B06 0 days 0 hours to 255 days 23 hours Date and time Start date and time B07 Date and time of first calibration YY.MM. DD.HH.MM Calibration procedure B08 0 Zero and span 1 Span only 2 Zero only n Default Values When the analyzer is delivered, or if data are initialized, the calibration settings are by default, as shown in Table 9.2. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <9. Calibration> Table 9.2 9-9 Default Settings for Calibration Item Default Setting Calibration mode Manual Calibration procedure Span - zero Zero gas (oxygen) concentration 1.00% Span gas (oxygen) concentration 21.00% Hold (Output stabilization) time 10 minutes, 00 seconds Calibration time 10 minutes, 00 seconds Calibration interval 30 days, 00 hours Start date and time 00 (YY) 01 (MM) 01(DD) 00:00 9.3 Calibration 9.3.1 Manual Calibration For manual calibration, consult Section 7.11, “Calibration,” earlier in this manual. 9.3.2 Semi-automatic Calibration (1) Calibration startup using infrared switches Table 9.3 Semi-automatic Calibration Procedure Switch operation ∧ ENT > > ∧ ENT > ∧ ENT > ∧ ENT > ∧ ENT > ∧ ENT Display Description b11 SA-CAL Change the parameter code to b11. (Previous operations omitted) SPAn /20.84 ZEro /0.89 CALEnd Touch the [ENT] key again to open the span gas solenoid valve. The span gas then flows. "SPAn" and the currently measured value are alternately displayed. If the "output hold" is set, the output hold will start at this time. If the set calibration time elapses, the span gas solenoid valve closes automatically, the zero gas solenoid valve opens and the zero gas flows. "ZEro" and the currently measured value are displayed alternately. End If the set calibration time elapses, the zero gas solenoid valve then closes automatically. The ''CALEnd'' flashes until the set output stabilization time elapses. If the output stabilization time elapses, the basic panel display then appears. Output holding will be released. Basic panel display Touch the [ENT] key to display "SA-CAL" (Semi Auto CAL). When “CAL Err” appears, a calibration coefficient alarm (alarm 6 or 7) may have occurred. Press [ENT] key to return to basic panel display. Check the alarm number. Refer to Subsection 12.2.2.2, Alarm 6, or Subsection 12.2.2.3, Alarm 7, remove the cause, and then recalibrate the instrument. ] indicates that the corresponding keys are being touched, and the light characters indicate flashing. The symbol [ “/” indicates that both are displayed alternately. (2) To start calibration using an input contact, follow these steps: • Make sure that Calibration start has been selected in the Input contacts display (see Section 8.5, earlier in this manual). • Apply an input contact to start calibration. (3) To stop calibration midway, follow these steps: Touch the [>] key and [ENT] key together. The calibration will stop and the output stabilization time will be set up. Touch the [>] key once again to return to the basic panel display and the analyzer will be in normal measurement. IM 11M12A01-04E 10th Edition : May 19, 2017-00 9.3.3 <9. Calibration> 9-10 Automatic Calibration No execution operations are required for automatic calibration. Automatic calibration starts in accordance with a preset start day and time. Calibration is then executed at preset intervals. NOTE Before conducting a semi-automatic or automatic calibration, run the automatic calibration unit beforehand to obtain a calibration flow of 600 ± 60 ml/min. IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-1 <10. Other Functions> 10. Other Functions 10.1 Detailed Display Select the desired parameter code to display the detailed operation data (see Table 10.1, “Parameter Codes for Detailed Operation Data”. NOTE Refer to Section 7.8, “Setting Display Item”, for parameter code “A00”. Table 10.1 Parameter Codes for Detailed Operation Data Code Item A00 Selection 0 Oxygen concentration of display 1 Oxygen analyzer (0.0) items 2 Oxygen analyzer (0.0) Engineering Code unit 3 Analog output selected Item Engineering unit A50 Span correction ratio 0 % A51 Span correction ratio 1 % A52 Span correction ratio 2 % A53 Span correction ratio 3 % A01 Oxygen concentration % O2 A54 Span correction ratio 4 % A02 Humidity %H2O A55 Span correction ratio 5 % A03 Mixing ratio kg/kg A56 Span correction ratio 6 % A04 Relative humidity % A57 Span correction ratio 7 % A05 Dew point °C A58 Span correction ratio 8 % A59 Span correction ratio 9 % °C A60 Zero correction ratio 0 % A06 Air ratio A07 Cell temperature A08 Cold junction temperature °C A61 Zero correction ratio 1 % A09 Meas. gas temperature °C A62 Zero correction ratio 2 % A10 Amount of water vapor in exhaust gas % A63 Zero correction ratio 3 % A11 Cell voltage mV A64 Zero correction ratio 4 % A12 TC voltage mV A65 Zero correction ratio 5 % A15 Cold junction voltage mV A66 Zero correction ratio 6 % A16 Output current mA A67 Zero correction ratio 7 % A20 Cell response time Seconds A68 Zero correction ratio 8 % A21 Cell internal resistance Ω A69 Zero correction ratio 9 % A22 Cell robustness A70 Calibration history 0 YY.MM.DD/ HH.MM A23 Heater on-time ratio % A71 Calibration history 1 YY.MM.DD/ HH.MM A24 Oxygen concentration (with time constant) % O2 A72 Calibration history 2 YY.MM.DD/ HH.MM A25 Humidity (with time constant) %H2O A73 Calibration history 3 YY.MM.DD/ HH.MM A26 Mixing ratio (with time constant) kg/kg A74 Calibration history 4 YY.MM.DD/ HH.MM A30 Max. oxygen concentration % O2 A75 Calibration history 5 YY.MM.DD/ HH.MM A31 Occurrence of maximum oxygen concentration YY.MM.DD/ A76 HH.MM Calibration history 6 YY.MM.DD/ HH.MM IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-2 A32 Min. oxygen concentration % O2 A77 Calibration history 7 YY.MM.DD/ HH.MM A33 Occurrence of minimum oxygen concentration YY.MM.DD/ A78 HH.MM Calibration history 8 YY.MM.DD/ HH.MM A34 Average oxygen concentration % O2 A79 Calibration history 9 YY.MM.DD/ HH.MM A35 Maximum humidity %H2O A80 Time YY.MM.DD/ HH.MM A36 Occurrence of maximum humidity YY.MM.DD/ A90 HH.MM A37 Minimum humidity %H2O A38 Occurrence of minimum humidity YY.MM.DD/ HH.MM A39 Average humidity %H2O A40 Maximum humidity kg/kg A41 Occurrence of maximum humidity YY.MM.DD/ HH.MM A42 Minimum humidity kg/kg A43 Occurrence of minimum humidity YY.MM.DD/ HH.MM A44 Average humidity kg/kg 10.1.1 Software revision Oxygen Concentration The oxygen concentration in the process gas is displayed (consult Section 9.1.1, earlier in this manual). 10.1.2 Humidity The moisture content contained in air is displayed where the process gas contains water vapors and air (refer to Section 9.1.1, earlier in this manual). 10.1.3 Mixing Ratio Where the process gas contains water vapors and air, their mixing ratio is displayed (refer to Section 9.1.1, earlier in this manual). 10.1.4 Relative Humidity The relative humidity “U” may be obtained using the following theoretical equation (JIS Z 8806). U = e/es x100 where, e = Water vapor pressure of moist air es = Saturated water vapor Since the gas-pressure ratio is equal to the volume ratio, the above equation may be expressed mathematically by: U = P x H/ es x100 where, P = Gas pressure H = Humidity (volume ratio) The saturated water vapor pressure es is determined by a gas temperature, so the relative humidity can be obtained by entering the parameters. Use parameter F13 for temperature entry. Use parameter F14 for pressure entry. 10.1.5 Dew Point The dew point is the temperature at which a water vapor pressure in the moist air is equal to the saturated water vapor pressure. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-3 The water vapor pressure in the moist air can be obtained from the gas pressure and volume ratio (= pressure ratio), as given below. e=PxH where, e = Water vapor pressure in moist air P = Gas pressure H = Humidity (volume ratio) Use the above equation to find the water vapor in the moist air, and use the theoretical equation (JIS Z 8806) to obtain the temperature at which that water vapor is equal to the saturated water vapor pressure. 10.1.6 Air Ratio “Air ratio” is defined as the ratio of (the amount of air theoretically required to completely burn all the fuel) to (the amount of air actually supplied). For this equipment, the air ratio will be obtained in a simplified way by measuring the oxygen concentration in the exhaust gas. The air ratio may be expressed mathematically by: m= 1 (21- oxygen concentration) x 21 If you use the air ratio data for estimating the combustion efficiency, etc., check that no air is leaking in beforehand and that the measured value has not been affected by any interference gas (CH4, CO, H2, etc.). 10.1.7 Cell Temperature This indicates the cell (sensor) temperature, usually indicating 750°C., obtainable from the thermoelectromotive force and cold junction temperature described below. 10.1.8 Process Gas Temperature A process gas temperature set with parameter code F13 is displayed. 10.1.9 C. J. Temperature This is the internal (where the electronics is installed) temperature of equipment, which compensates for the cold junction temperature for a thermocouple measuring the cell temperature. If this temperature exceeds 85°C, the electronics may fail. When the ZR202G is used, the maximum C. J. temperature will be 150°C. If the internal temperature exceeds this, take measures to reduce the temperature such as by not exposing the equipment to radiation. 10.1.10 Amount of Water Vapor in Exhaust Gas Calculate the water vapor in the combusted exhaust gas using parameters set in Section 8.6.3, “Setting Fuels.” Use the following equation for calculation: Moisture (water vapor) = (amount of water vapor per unit quantity of fuel) + (moisture in air) }/total amount of exhaust gas Gw + 1.61 x Z x Ao x m = X + Ao x m where, Gw = Amount of water vapor in exhaust gas, m3/kg (or m3/m3) Z = Atmospheric absolute humidity, kg/kg Ao = Theoretical air amount, m3/kg (or m3/m3) m = Air ratio X = Fuel coefficient, Nm3/kg or m3/m3 For details on parameters, see Section 8.6.3, “Setting Fuels,” earlier in this manual. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-4 10.1.11 Cell Voltage The cell (sensor) voltage will be an index to determine the amount of degradation of the sensor. The cell voltage corresponds to the oxygen concentration currently being measured. If the indicated voltage approximates the ideal value (corresponding to the measured oxygen concentration), the sensor will be assumed to be normal. The ideal value of the cell voltage (E), when the oxygen concentration measurement temperature is controlled at 750°C., may be expressed mathematically by: E = -50.74 log (Px/Pa) [mV] where, Px: Oxygen concentration in the sample gas Pa: Oxygen concentration in the reference gas, (21 vol%O2) Table 10.2 shows oxygen concentration versus cell voltage. Table 10.2 Oxygen Concentration Vs. Cell Voltage, (cell temperature: 750°C) %O2 mv 0.1 117.83 0.2 102.56 0.3 93.62 0.4 87.28 0.5 82.36 0.6 78.35 0.7 74.95 0.8 72.01 0.9 69.41 %O2 mv 1 67.09 2 51.82 3 42.88 4 36.54 5 31.62 6 27.61 7 24.21 8 21.27 9 18.67 21.0 0 30 -7.86 40 -14.2 50 -19.2 60 -23.1 70 -26.5 80 -29.5 90 -32.1 %O2 mv %O2 mv 10 16.35 100 -34.4 T10.2E.ai 10.1.12 Thermocouple Voltage The cell temperature is measured with a Type K (chromel-alumel) thermocouple. The thermocouple cold junction is located in the detector terminal box. The cell temperature and the thermocouple voltage (including the voltage corresponding to the cold junction temperature) are displayed. 10.1.13 Cold Junction Voltage This equipment uses temperature-measurement ICs that measure the cold junction temperatures. The voltage measured by those ICs is displayed. 10.1.14 Current Output The analog output current is displayed. 10.1.15 Response Time The cell’s response time is obtained in the procedure shown in Figure 10.1. If only either zero or span calibration has been carried out, the response time will not be measured just as it will not be measured in manual calibration. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-5 Five minutes maximum Response time mA 90% 100% 10% of analog output span Time Start calibration Calibration complete The response time is obtained after the corrected calibration curve has been found. The response time is calculated, starting at the point corresponding to 10% of the analog output up to the point at 90% of the analog output span. That is, this response time is a 10 to 90% response. F10.1E.ai Figure 10.1 Typical Response Time characteristics 10.1.16 Cell’s Internal Resistance A new cell (sensor) indicates its internal resistance of 200 Ω maximum. As the cell degrades, so will the cell’s internal resistance increase. The degradation of the cell cannot be found only by changes in cell’s internal resistance, however. Those changes in the cell’s internal resistance will be a hint to knowing the sensor is degrading. The updated values obtained during the calibration are displayed. 10.1.17 Robustness of a Cell The robustness of a cell is an index for predicting the remaining life of a sensor and is expressed as one of four time periods during which the cell may still be used: (1) more than a year (2) more than six months (3) more than three months (4) less than one month The above four time periods are tentative and only used for preventive maintenance, not for warranty of the performance. This cell’s robustness can be found by a total evaluation of data involving the response time, the cell’s internal resistance, and calibration factor. However, if a zero or span calibration was not made, the response time cannot be measured. In such a case, the response time is not used as a factor in evaluating the cell’s robustness. Table 10.3 Cell robustness Cell Robustness and Service Life Cell s service life 5 One year min. 3 Six months min. 2 Three months min. 1 One month max. 10.1.18 Heater On-Time Ratio The probe sensor is heated to and maintained at 750°C. When the sample gas temperature is high, the amount of heater ON-time decreases. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-6 10.1.19 Oxygen Concentration (with time constant), Humidity (with time constant), and Mixing Ratio (with time constant) When the output damping is specified in the mA-output range setting, the corresponding time constant is also displayed. 10.1.20 Maximum Oxygen Concentration, Humidity, and Mixing Ratio The maximum oxygen concentration and the time of its occurrence during the period specified in the Averaging display are displayed. If the setup period elapses, the maximum oxygen concentration that has been displayed so far will be cleared and a new maximum oxygen concentration will be displayed. If the setup period of time is changed, the current maximum oxygen concentration will be displayed (for more details, see Section 8.6.2 earlier in this manual). 10.1.21 Minimum Oxygen Concentration, Humidity, and Mixing Ratio The minimum oxygen concentration and the time of its occurrence during the period specified in the Averaging display are displayed. If the setup period elapses, the minimum oxygen concentration that has been displayed so far will be cleared and a new minimum oxygen concentration will be displayed. If the setup period of time is changed, the current minimum oxygen concentration will be displayed (for more details, see Section 8.6.2 earlier in this manual). 10.1.22 Average Oxygen Concentration, Humidity, and Mixing Ratio The average oxygen concentration during the periods over which average values are calculated is displayed. If the setup period elapses, the average oxygen concentration that has been displayed so far will be cleared and a new average oxygen concentration will be displayed. If the setup period of time is changed, the current average oxygen concentration will be displayed (for more details, see Section 8.6.2 earlier in this manual). 10.1.23 Span and Zero Correction Ratios Span and zero correction ratios for the past ten calibrations are recorded to enable you to check the degradation of the sensor (cell). If the correction ratio is beyond the limits as shown in Figure 10.2, the sensor should no longer be used. These ratios can be found by calculating the data as shown below. 81.92 Zero origin ez Cell electromotive force, mV Calibration curve before correction Previous zero gas data B A e1 Corrected calibration curve (theoretical calibration curve) es C 0 21.0 p1 Span gas concentration 0.51 Span origin Oxygen concentration (vol%O2) Zero correction ratio = (B/A) x 100 (%) Correctable range: 100 ± 30% Span correction ratio = (C/A) x 100 (%) Correctable range: 0 ± 18% F10.2E.ai Figure 10.2 IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-7 10.1.24 History of Calibration Time The calibration-conducted dates and times for the past ten calibrations are stored in memory. 10.1.25 Time The current date and time are displayed. These are backed up by built-in batteries, so no adjustment is required after the power is switched off. The following shows an example of displaying June 21, 2000, 3:06 p.m. Displayed alternately 00.06.21 15.06 F10.3E.ai Figure 10.3 Date-and-time Display 10.1.26 Software Revision The revision (number) of the software installed is displayed. 10.2 Operational Data Initialization Individual set data initialization enables you to return to the default values set at the time of delivery. There are two types of initializations: an all set-data initialization and a parameter-codebased initialization. Table 10.4 lists the initialization items by a parameter code, and default values. Table 10.4 Parameter Codes for Initialization Parameter code Data to be initialized F30 All data F31 Data in Group A F32 Data in Group B F33 Data in Group C F34 Data in Group D F35 Data in Group E F36 Data in Group F CAUTION When Data in Group F are initialized by the parameter code of “F36”, “F01” and “F02” and “F08” and “F10” cannot be initialized. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10.3 10-8 Initialization Procedure Follow the table below to initialize parameters. The password for initialization is 1255. Table 10.5 Initialization Procedure Switch operation ∧ ENT Display > ∧ ENT 0000 > ∧ ENT 1000 > ∧ ENT 1000 > ∧ ENT 1200 > ∧ ENT 1200 > ∧ ENT 1250 > ∧ ENT 1250 > ∧ ENT 1255 > ∧ ENT 1255 > ∧ ENT USr Go Touch the [ENT] key again to display "USr Go." > ∧ ENT USr Go Touch the [ENT] key once more. All the digits then flash for two to three seconds, and data initialization starts. > ∧ ENT F30 > The symbol ( F30 Description Enter the parameter code for the item to be initialized. The following show an example of entering "F30." (Previous needed operations are omitted.) Touch the [ENT] key to switch to the password entry display. Enter the password 1255 for initialization. After you enter the password and then touch the [ENT] key, all the digits flash. The initialization is complete, and the parameter code selection display then appears. ) indicates that the keys are being touched, the light characters indicates flashing. WARNING Do not attempt to turn off the equipment power during initialization (while “USr Go” is flashing). 10.4 Reset Resetting enables the equipment to restart. If the equipment is reset, the power is turned off and then back on. In practical use, the power remains on, and the equipment is restarted under program control. Resetting will be possible in the following conditions: IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-9 (1) Error 1 if the cell voltage is defective (2) Error 2 if a temperature alarm occurs (3) Error 3 if the A/D converter is defective (4) Error 4 if an EEPROM write error occurs For details on error occurrence, consult Chapter 12, “Troubleshooting”, later in this manual. If any of the above problems occurs, the equipment turns off the power to the detector heater. To cancel the error, reset the equipment following the steps below, or turn the power off and then back on. CAUTION • Make sure that before resetting or restarting the power that there is no problem with the equipment. • If a problem arises again after the resetting, turn the power off and troubleshoot the problem by consulting the Troubleshooting chapter later in this manual. When there is no error, the Basic panel display will appear. Table 10.6 Resetting Switch operation > ∧ ENT Display Err-01 /-----PASSno Brief Description If an error occurs, the error number and "------" are displayed alternately, as given on the left. > ∧ ENT > ∧ ENT 0000 Touch the [ENT] key again to switch to the password entry display. > ∧ ENT 1000 Enter the password 1102. > ∧ ENT 1102 > ∧ ENT A01 > ∧ ENT G01 > ∧ ENT G01 > ∧ ENT G30 > ∧ ENT All the digits light up. Hold down the [ENT] key for at least three seconds. Intermediate switch operations omitted. Change the parameter code to "G30". Touch the [ENT] key to execute resetting. The symbol [ ] indicates that the corresponding keys are being touched, and the light characters indicate “ flashing.” “ / ” indicates that the characters are displayed alternately. CAUTION Parameters of blank item are not used for Oxygen Analyzer or Humidity Analyzer. IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-10 <10. Other Functions> Table 10.7 Parameter Codes for Oxygen Analyzer Display-related Items in Group A Code Item A00 Selection 0 Oxygen concentration of display 1 Oxygen analyzer (0.0) items 2 Oxygen analyzer (0.0) Engineering Code unit A50 3 Analog output selected A01 Oxygen concentration % O2 Item Span correction ratio 0 Engineering unit % A51 Span correction ratio 1 % A52 Span correction ratio 2 % A53 Span correction ratio 3 % A54 Span correction ratio 0 % A02 A55 Span correction ratio 3 % A03 A56 Span correction ratio 2 % A04 A57 Span correction ratio 1 % A05 A58 Span correction ratio 2 % A59 Span correction ratio 1 % A06 Air ratio A07 Cell temperature °C A60 Zero correction ratio 0 % A08 Cold junction temperature °C A61 Zero correction ratio 1 % A09 Meas. gas temperature °C A62 Zero correction ratio 2 % A10 Amount of water vapor in % exhaust gas % A63 Zero correction ratio 3 % A11 Cell voltage mV A64 Zero correction ratio 4 % A12 TC voltage mV A65 Zero correction ratio 5 % A15 Cold junction voltage mV A66 Zero correction ratio 6 % A16 Output current mA A67 Zero correction ratio 7 % A20 Cell response time Seconds A68 Zero correction ratio 8 % Ω A21 Cell internal resistance A22 Cell robustness A69 Zero correction ratio 9 % A70 Calibration history 0 YY.MM.DD/ HH.MM A23 Heater on-time ratio % A71 Calibration history 1 YY.MM.DD/ HH.MM A24 Oxygen concentration (with time constant) % O2 A72 Calibration history 2 YY.MM.DD/ HH.MM A25 A73 Calibration history 3 YY.MM.DD/ HH.MM A26 A74 Calibration history 4 YY.MM.DD/ HH.MM A30 Max. oxygen concentration % O2 A75 Calibration history 5 YY.MM.DD/ HH.MM A31 Occurrence of maximum oxygen concentration YY.MM.DD/ A76 HH.MM Calibration history 6 YY.MM.DD/ HH.MM A32 Min. oxygen concentration % O2 A77 Calibration history 7 YY.MM.DD/ HH.MM A33 Occurrence of minimum oxygen concentration YY.MM.DD/ A78 HH.MM Calibration history 8 YY.MM.DD/ HH.MM A34 Average oxygen concentration % O2 A79 Calibration history 9 YY.MM.DD/ HH.MM A35 A80 Time YY.MM.DD/ HH.MM A36 A90 Software revision Note1: “/” indicates that both are displayed alternately. Note2: Parameter codes with no items in the above table are not used in the oxygen analyzer. IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-11 <10. Other Functions> Calibration-related Items in Group B Code Item Tuning Engineering unit Default setting B01 Zero gas concentration 0.3 to 100 % O2 1% O2 B02 Span gas concentration 4.5 to 100 % O2 21% O2 B03 Calibration mode 0 Manual calibration Manual calibration 1 Semi-automatic and manual calibration 2 Automatic, semi-automatic, and manual calibration B04 Hold (Output stabilization) time 0 minutes, 0 seconds to 60 minutes, 59 seconds MM.SS 10 minutes, 0 seconds B05 Calibration time 0 minutes, 0 seconds to 60 minutes, 59 seconds MM.SS 10 minutes, 0 seconds B06 Calibration interval 0 days 0 hours to 255 days 23 hours DD.HH B07 Calibration start date and time B08 Calibration procedure YY.MM.DD/ HH.MM 0 Zero and span 30 days, 0 hours 00.01.01.00.00 Zero and span 1 Span only 2 Zero only B09 Calibration concentration measurement B10 Manual calibration implementation B11 Semi-automatic calibration implementation Display only % O2 IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-12 <10. Other Functions> Output-related Items in Group C Code C01 Item Analog output Tuning Engineering unit Default setting 0 Oxygen concentration Oxygen concentration 1 Amount of moisture content 2 Mixed ratio C03 Output mode 0 Linear Linear 1 Logarithm C04 Output during warm-up 0 Held at 4 mA 1 Held at 20 mA 2 Set value remains held. C05 Held at 4 mA. Output during maintenance 0 Not held Held output just before maintenance service. 1 Held output just before maintenance service. 2 Set value remains held. C06 Output during calibration 0 Not held Held output just before calibration. 1 Held output just before calibration. 2 Set value remains held. C07 Output during error occurrence 0 Not held Held output at a preset value. 1 Held output just before abnormal state occurs. 2 Set value remains held. C11 Min. oxygen concentration See Section 8.1. % O2 0% O2 C12 Max. oxygen concentration See Section 8.1. % O2 25% O2 C30 Output damping constant 0 to 255 Seconds 0 second C31 Set value during warm-up 2.4 to 21.6 mA 4 mA C32 Set value during maintenance 2.4 to 21.6 mA 4 mA C33 Set value during calibration 2.4 to 21.6 mA 4 mA C34 Set value in abnormal state 2.4 to 21.6 mA 3.4 mA Note: “C07” and “C34” is not displayed when option code “/C2” or “/C3” (NAMUR NE 43 compliant) is specified. Alarm-related Items in Group D Code Item Tuning Engineering unit Default setting D01 Oxygen concentration, high-high alarm setpoint 0 to 100 % O2 100% O2 D02 Oxygen concentration, high alarm setpoint 0 to 100 % O2 100% O2 D03 Oxygen concentration, low alarm setpoint 0 to 100 % O2 0% O2 D04 Oxygen concentration, low-low alarm setpoint 0 to 100 % O2 0% O2 D30 Oxygen concentration alarm hysteresis 0 to 9.9 % O2 0.1% O2 D33 Delayed alarm action 0 to 255 Seconds 3 seconds D41 Oxygen concentration, high-high alarm detection 1 Detection Oxygen concentration, high alarm detection 1 Detection Oxygen concentration, low alarm detection 1 Detection Oxygen concentration, low-low alarm detection 1 Detection D42 D43 D44 0 Not detected 0 Not detected 0 Not detected 0 Not detected Not detected Not detected Not detected Not detected IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-13 <10. Other Functions> Contact-related Items in Group E Code E01 Item Tuning Engineering unit Default setting Selection of input contact 1 0 Invalid Invalid 1 Calibration gas pressure decrease 2 Measurement range change 3 Calibration start 4 Detection of non-combusted gas E02 Selection of input contact 2 0 Invalid Invalid 1 Calibration gas pressure decrease 2 Measurement range change 3 Calibration start 4 Detection of non-combusted gas E03 Selecting action of input contact 1 0 Action with closed contact E04 Selecting action of input contact 2 0 Action with closed contact E10 Selecting action of output contact 1 0 Action with closed contact (normally energized) Action with closed contact 1 Action with open contact Action with closed contact 1 Action with open contact Action with closed contact 1 Action with open contact (normally de-energized) E20 Output contact 1 error 0 No action No action 1 Action E21 Output contact 1, high-high 0 No action alarm 1 Action No action E22 Output contact 1, high alarm No action E23 Output contact 1, low alarm 0 No action 0 No action 1 Action No action 1 Action E24 Output contact 1, low-low alarm 0 No action E25 Output contact 1, during maintenance 0 No action E26 Output contact 1, during calibration 0 No action Output contact 1, measurement range change 0 No action E28 Output contact 1, during warm up 0 No action E29 Output contact 1, calibration gas pressure decrease 0 No action Output contact 1, detection of non- combusted gas 0 No action E27 E32 No action 1 Action Action 1 Action No action 1 Action No action 1 Action Action 1 Action No action 1 Action No action 1 Action IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-14 <10. Other Functions> Equipment Setup and Others in Group F Code Item Tuning F01 Equipment setup F02 Selection of measurement gas F04 Selection of temperature units 1 degree F F05 Selection of pressure units 0 kPa F08 Selection of display items Engineering unit Default setting 0 Oxygen analyzer Oxygen analyzer 1 Humidity analyzer 0 Wet Wet 1 Dry 0 degree C degree C kPa 1 psi 0 Oxygen concentration Oxygen concentration 1 Amount of moisture quantity 2 Mixed ratio 3 Item selected with analog output F10 Date YY.MM.DD/ HH.MM F11 Period over which average values are calculated 1 to 255 hours Hours One hour F12 Period over which max. and min. values are monitored 1 to 255 hours Hours 24 hours F15 Purging time 0 to 60 minutes Minutes 0 minute F20 Amount of water vapor in exhaust gas 0 to 5 m3/kg (m3) 1.0 m3/kg (m3) F21 Theoretical amount of air 0 to 20 m3/kg (m3) 1.0 m3/kg (m3) F22 X value 0 to 19.99 F23 Absolute humidity of the atmosphere 0 to 1 kg/kg 0.1 kg/kg F30 Initializing all data F31 Initializing data in group A F32 Initializing data in group B F33 Initializing data in group C F34 Initializing data in group D F35 Initializing data in group E F36 Initializing data in group F 1 Inspection-related Items in Group G Code Item Tuning G01 mA-output loop 4 to 20 G11 0 Open Output contact 1 Engineering unit mA Default setting 4 mA Open 1 Closed G12 Output contact 2 0 Open Open 1 Closed G15 Automatic calibration solenoid valve (zero) 0 Off Off 1 On G16 Automatic calibration solenoid valve (span) 0 Off 1 On G21 Input1 contact 0 Open Off 1 Closed G22 Input2 contact 0 Open 1 Closed G30 Reset IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-15 <10. Other Functions> Table 10.8 Parameter Codes for Humidity Analyzer Display-related Items in Group A Code Item A00 Selection 0 Oxygen concentration of display 1 Oxygen analyzer (0.0) items 2 Oxygen analyzer (0.0) Engineering Code unit A50 3 Analog output selected Item Span correction ratio 0 Engineering unit % A51 Span correction ratio 1 % A52 Span correction ratio 2 % A53 Span correction ratio 3 % A01 Oxygen concentration % O2 A54 Span correction ratio 0 % A02 Humidity %H2O A55 Span correction ratio 3 % A03 Mixing ratio kg/kg A56 Span correction ratio 2 % A04 Relative humidity % A57 Span correction ratio 1 % A05 Dew point °C A58 Span correction ratio 2 % A59 Span correction ratio 1 % A06 A07 Cell temperature °C A60 Zero correction ratio 0 % A08 Cold junction temperature °C A61 Zero correction ratio 1 % A09 Meas. gas temperature °C A62 Zero correction ratio 2 % A63 Zero correction ratio 3 % A10 A11 Cell voltage mV A64 Zero correction ratio 4 % A12 TC voltage mV A65 Zero correction ratio 5 % A15 Cold junction voltage mV A66 Zero correction ratio 6 % A16 Output current mA A67 Zero correction ratio 7 % A20 Cell response time Seconds A68 Zero correction ratio 8 % A21 Cell internal resistance Ω A69 Zero correction ratio 9 % A22 Cell robustness kg/kg A70 Calibration history 0 YY.MM.DD/ HH.MM A23 Heater on-time ratio % A71 Calibration history 1 YY.MM.DD/ HH.MM A24 Oxygen concentration (with time constant) % O2 A72 Calibration history 2 YY.MM.DD/ HH.MM A25 Humidity (with time /time constant) %H2O A73 Calibration history 3 YY.MM.DD/ HH.MM A26 Mixing ratio (with time /time constant) A74 Calibration history 4 YY.MM.DD/ HH.MM A30 Max. oxygen concentration % O2 A75 Calibration history 5 YY.MM.DD/ HH.MM A31 Occurrence of maximum oxygen concentration YY.MM.DD/ A76 HH.MM Calibration history 6 YY.MM.DD/ HH.MM A32 Min. oxygen concentration % O2 A77 Calibration history 7 YY.MM.DD/ HH.MM A33 Occurrence of minimum oxygen concentration YY.MM.DD/ A78 HH.MM Calibration history 8 YY.MM.DD/ HH.MM A34 Average oxygen concentration % O2 A79 Calibration history 9 YY.MM.DD/ HH.MM A35 Maximum humidity %H2O A80 Time YY.MM.DD/ HH.MM A36 Occurrence of max. humidity YY.MM.DD/ A90 HH.MM A37 Minimum humidity %H2O A38 Occurrence of min. humidity YY.MM.DD/ HH.MM A39 Average humidity %H2O Software revision IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-16 <10. Other Functions> A40 Maximum mixing ratio kg/kg A41 Occurrence of max. mixing ratio YY.MM.DD/ HH.MM A42 Minimum mixing ratio kg/kg A43 Occurrence of min. mixing ratio YY.MM.DD/ HH.MM A44 Average mixing ratio kg/kg Note1: “/” indicates that both are displayed alternately. Note2: Parameter codes with no items in the above table are not used in the oxygen analyzer. Calibration-related Items in Group B Code Item Tuning Engineering unit Default setting B01 Zero gas concentration 0.3 to 100 % O2 1% O2 B02 Span gas concentration 4.5 to 100 % O2 21% O2 B03 Calibration mode 0 Manual calibration Manual calibration 1 Semi-automatic and manual calibration 2 Automatic, semi-automatic, and manual calibration B04 Hold (Output stabilization) time 0 minutes, 0 seconds to 60 minutes, 59 seconds MM.SS 10 minutes, 0 seconds B05 Calibration time 0 minutes, 0 seconds to 60 minutes, 59 seconds MM.SS 10 minutes, 0 seconds B06 Calibration interval 0 days 0 hours to 255 days 23 hours DD.HH B07 Calibration start date and time B08 Calibration procedure YY.MM.DD/ HH.MM 0 Zero and span 30 days, 0 hours 00.01.01.00.00 Zero and span 1 Span only 2 Zero only B09 Calibration concentration measurement B10 Manual calibration implementation B11 Semi-automatic calibration implementation Display only % O2 IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-17 <10. Other Functions> Output-related Items in Group C Code C01 Item Analog output Tuning Engineering unit Default setting 0 Oxygen concentration Humidity 1 Amount of moisture content 2 Mixed ratio C03 Output mode 0 Linear Linear 1 Logarithm C04 Output during warm-up 0 Held at 4 mA 1 Held at 20 mA 2 Set value remains held. C05 Held at 4 mA. Output during maintenance 0 Not held Held output just before maintenance service. 1 Held output just before maintenance service. 2 Set value remains held. C06 Output during calibration 0 Not held Held output just before calibration. 1 Held output just before calibration. 2 Set value remains held. C07 Output during error occurrence 0 Not held Held output at a preset value. 1 Held output just before abnormal state occurs. 2 Set value remains held. C11 Min. oxygen concentration See Section 8.1. % O2 0% O2 C12 Max. oxygen concentration See Section 8.1. % O2 25% O2 C13 Minimum humidity See Section 8.1. %H2O 0 %H2O C14 Maximum humidity See Section 8.1. %H2O 25 %H2O C15 Minimum mixing ratio See Section 8.1. kg/kg 0 kg/kg C16 Maximum mixing ratio See Section 8.1. kg/kg 0.2 kg/kg C30 Output damping constant 0 to 255 Seconds 0 second C31 Set value during warm-up 2.4 to 21.6 mA 4 mA C32 Set value during maintenance 2.4 to 21.6 mA 4 mA C33 Set value during calibration 2.4 to 21.6 mA 4 mA C34 Set value in abnormal state 2.4 to 21.6 mA 3.4 mA Note: “C07” and “C34” is not displayed when option code “/C2” or “/C3” (NAMUR NE 43 compliant) is specified. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-18 Alarm-related Items in Group D Code Item Tuning Engineering unit Default setting D01 Oxygen concentration, high-high alarm setpoint 0 to 100 % O2 100% O2 D02 Oxygen concentration, high alarm setpoint 0 to 100 % O2 100% O2 D03 Oxygen concentration, low alarm setpoint 0 to 100 % O2 0% O2 D04 Oxygen concentration, low-low alarm setpoint 0 to 100 % O2 0% O2 D05 Humidity, high-high alarm setpoint 0 to 100 %H2O 100 %H2O D06 Humidity, high alarm setpoint 0 to 100 %H2O 100 %H2O D07 Humidity, low alarm setpoint 0 to 100 %H2O 0 %H2O D08 Humidity, low-low alarm setpoint 0 to 100 %H2O 0 %H2O D11 Mixing ratio, high-high alarm setpoint 0 to 1 kg/kg 1 kg/kg D12 Mixing ratio, high alarm setpoint 0 to 1 kg/kg 1 kg/kg D13 Mixing ratio, low alarm setpoint 0 to 1 kg/kg 0 kg/kg D14 Mixing ratio, low-low alarm setpoint 0 to 1 kg/kg 0 kg/kg D30 Oxygen concentration alarm hysteresis 0 to 9.9 % O2 0.1% O2 D31 Humidity alarm hysteresis 0 to 9.9 %H2O 0.1 %H2O D32 Mixing ratio alarm hysteresis 0 to 0.1 kg/kg 0.001 kg/kg D33 Delayed alarm action 0 to 255 Seconds 3 seconds D41 Oxygen concentration, high-high alarm detection 1 Detection Oxygen concentration, high alarm detection 1 Detection Oxygen concentration, low alarm detection 1 Detection Oxygen concentration, low-low alarm detection 1 Detection Humidity, high-high alarm detection 1 Detection Humidity, high alarm detection 1 Detection Humidity, low alarm detection 1 Detection Humidity, low-low alarm detection 1 Detection Mix ratio, high-high alarm detection 1 Detection Mix ratio, high alarm detection 1 Detection Mix ratio, low alarm detection 1 Detection D42 D43 D44 D45 D46 D47 D48 D51 D52 D53 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected 0 Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-19 <10. Other Functions> D54 Mix ratio, low-low alarm detection 0 Not detected Not detected 1 Detection Contact-related Items in Group E Code E01 Item Tuning Engineering unit Default setting Selection of input contact 1 0 Invalid Invalid 1 Calibration gas pressure decrease 2 Measurement range change 3 Calibration start 4 Detection of non-combusted gas E02 Selection of input contact 2 0 Invalid Invalid 1 Calibration gas pressure decrease 2 Measurement range change 3 Calibration start 4 Detection of non-combusted gas E03 Selecting action of input contact 1 0 Action with closed contact E04 Selecting action of input contact 2 0 Action with closed contact E10 Selecting action of output contact 1 0 Action with closed contact (normally energized) Action with closed contact 1 Action with open contact Action with closed contact 1 Action with open contact Action with closed contact 1 Action with open contact (normally de-energized) E20 Output contact 1 error 0 No action No action 1 Action E21 Output contact 1, high-high 0 No action alarm 1 Action No action E22 Output contact 1, high alarm No action E23 0 No action 1 Action Output contact 1, low alarm 0 No action No action 1 Action E24 Output contact 1, low-low alarm 0 No action E25 Output contact 1, during maintenance 0 No action E26 Output contact 1, during calibration 0 No action Output contact 1, measurement range change 0 No action Output contact 1, during warm up 0 No action Output contact 1, calibration gas pressure decrease 0 No action Output contact 1, detection of non- combusted gas 0 No action E27 E28 E29 E32 No action 1 Action Action 1 Action No action 1 Action No action 1 Action Action 1 Action No action 1 Action No action 1 Action IM 11M12A01-04E 10th Edition : May 19, 2017-00 10-20 <10. Other Functions> Equipment Setup and Others in Group F Code F01 Item Tuning Equipment setup Engineering unit Default setting 0 Oxygen analyzer Not initialized 1 Humidity analyzer F02 F04 F05 Selection of temperature units 0 degree C degree C 1 degree F Selection of pressure units 0 kPa kPa 1 psi F08 Selection of display items 0 Oxygen concentration Humidity 1 Amount of moisture quantity 2 Mixed ratio 3 Item selected with analog output F10 Date YY.MM.DD/ HH.MM F11 Period over which average values are calculated 1 to 255 hours Hours One hour F12 Period over which max. and min. values are monitored 1 to 255 hours Hours 24 hours F13 Process gas temperature 0 to 3000 °C 300°C F14 Process gas pressure 0 to 300 kPa abs. 101.33 kPa abs. F20 F21 F22 F23 F30 Initializing all data F31 Initializing data in group A F32 Initializing data in group B F33 Initializing data in group C F34 Initializing data in group D F35 Initializing data in group E F36 Initializing data in group F Inspection-related Items in Group G Code Item Tuning G01 mA-output loop 4 to 20 G11 0 Open Output contact 1 Engineering unit mA Default setting 4 mA Open 1 Closed G12 Output contact 2 0 Open Open 1 Closed G15 Automatic calibration solenoid valve (zero) 0 Off Off 1 On G16 Automatic calibration solenoid valve (span) 0 Off 1 On G21 Input1 contact 0 Open Off 1 Closed G22 Input2 contact 0 Open 1 Closed G30 Reset IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10.5 10-21 Handling of the ZO21S Standard Gas Unit The following describe how to flow zero and span gases using the ZO21S Standard Gas Unit. Operate the ZO21S Standard Gas Unit, for calibrating a system classified as System 1, according to the procedures that follow. 10.5.1 Standard Gas Unit Component Identification Carrying case Flow checker Checks the zero and span gas flow. Span gas valve Controls the span gas (air) flow. Zero gas valve regulator Cover screws (six pcs.) Tube connection Pump Gas cylinder Supplies span gas (air) Contains the zero gas. A gas of 7 Nl is charged to 700 kPa Zero gas valve Clamp Attaches to the gas cylinder for use. Clamps the gas cylinder. Power cord Applies the power to operate the pump to supply the span gas. Figure 10.4 10.5.2 F10.14E.ai Standard Gas Unit Component Identification Installing Gas Cylinders Each ZO21S Standard Gas Unit comes with six zero gas cylinders including a spare. Each gas cylinder contains 7-liters of gas with a 0.95 to 1.0 vol% O2 (concentration varies with each cylinder) and nitrogen, at a pressure of 700 kPaG (at 35°C). The operating details and handling precautions are also printed on the product. Please read them beforehand. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-22 To install the gas cylinder, follow these steps: (1) Attach the zero gas valves onto the gas cylinder. First, turn the valve regulator of the zero gas valves counterclockwise to completely retract the needle at the top from the gasket surface. Maintaining the valve in this position, screw the valve mounting into the mouthpiece of the gas cylinder. (If screw connection is proper, you can turn the screw manually. Do not use any tool.) When the gasket comes in contact with the mouthpiece of the gas cylinder and you can no longer turn it manually, tighten the lock nut with a wrench. (2) Remove the carrying case from the standard gas unit. The case is attached to the unit with six screws. So, loosen the screws and lift them off. (3) Slide the gas cylinder through the hole in the back of the unit and connect the tube (the piping in the unit) to the valve connections. Insert each tube at least 10 mm to prevent leakage, and secure it using a tube clamp. (4) Attach the gas cylinder to the case. Extend the valve regulator of the zero gas valves through the hole in the front panel of the unit and secure the bottom of the cylinder with the clamp. (5) Take note of the oxygen concentration of the sealed gas indicated on the gas cylinder and replace the carrying case. Enter the oxygen concentration of the sealed gas using the parameter code B01 as a zero gas oxygen concentration. Also check that no piping is disconnected. Thus, the work of installing a gas cylinder is completed. However, gases in the cylinders cannot immediately flow out after these procedures. To discharge the gases, it is necessary for the needle in the zero gas valves to puncture a hole in the gas cylinder (see Section 10.5.3). 10.5.3 Calibration Gas Flow (1) To operate the standard gas unit, place it on a nearly horizontal surface in order to allow the flow check to indicate the precise flow rate. In addition, a power supply for driving the span gas (air) supply pump is required near the unit (the length of the power cord attached to the unit is 2 m). Select a suitable location for the unit near the installation site of the converter. (2) Connect the tube connector port of the standard gas unit to the calibration gas inlet of the detector, using a polyethylene resin tube with an outside diameter of 6 mm. Be careful to prevent gas leakage. (3) Fully open the stop valve mounted on the calibration gas inlet of the detector. (4) Enter the oxygen concentration of the sealed gas (noted from the cylinder) into the converter. Also check that the oxygen concentration of the span gas is correctly set (21 vol% O2 for clean air). When using the ZO21S Standard Gas Unit (for use of the atmospheric air as a span gas), use a hand-held oxygen analyzer to measure the actual oxygen concentration, and then enter it. The standard gas unit is used only when manual calibration is employed. Therefore, the timing for flowing span gas (air) is included in the manual calibration flowchart described in Section 7.11.2, earlier in this manual. For operation of the converter, see Section 7.11.2. (1) When the “OPEn” and the “measured oxygen concentration” are alternately displayed during calibration, plug the power cord into the power supply socket to start the pump of the standard gas unit. (2) Next, adjust the flow rate to 600 ± 60 ml/min using the span gas valve “AIR” (the flow check ball stops floating on the green line when the valve is slowly opened). To rotate the valve shaft, loosen the lock nut and turn it using a flat-blade screwdriver. Turning the valve shaft counterclockwise increases the flow rate. (3) After adjusting the flow rate, tighten the valve lock nut. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10-23 (4) After the measured oxygen concentration is stabilized, touch the [ENT] key, then all the digits flash. Touch the [ENT] key again to display “ZEro Y”. Disconnect the power cord to stop the pump. Touch the [ENT] key to display a zero gas value set with the parameter code B01. Touch the [ENT] key again to flash “OPEn” and the “measured oxygen concentration” alternately. To cause the zero gas flow, follow these steps: (1) Use the needle of the zero gas valve “CHECK GAS” to puncture a hole in the gas cylinder installed as described in Section 10.5.2. Fully clockwise turn the valve regulator by hand. (2) Next, adjust the flow rate to 600 ± 60 ml/min (the flow check ball stops floating on the green line when the valve is slowly opened). Turn the regulator of the zero gas valve back slowly counterclockwise. At that time, the flow rate also decreases as the inner pressure of the gas cylinder decreases. Monitor the flow check and, when the ball’s position changes greatly, readjust the valve. (3) Touch the [ENT] key after the measured oxygen concentration becomes stable. Then all the digits flash. Touch the [ENT] key again so that the “CALEnd” flashes. NOTE Be sure not to terminate the calibration in progress because of a shortage of gas in the cylinder. Each gas cylinder is operable for nine minutes or more provided the gas is discharged at the specified rate. Therefore, if your calibration time is estimated at four minutes, you can operate the zero calibration twice. (4) Stop the zero gas flow. Turn the zero gas valve regulator fully clockwise. If this valve regulator is not properly adjusted, the needle valve will not close completely and a cylinder gas may leak. When the output stabilization time elapses, the calibration is complete. (1) Fully close the stop valve mounted on the calibration gas inlet of the detector. (2) Remove the tube connecting the detector to the standard gas unit. WARNING Store the standard gas unit with the gas cylinder mounted where the ambient temperature does not exceed 40°C. Otherwise, the gas cylinder may explode. Store the spare gas cylinders under the same condition. 10.6 Methods of Operating Valves in the ZA8F Flow Setting Unit The ZA8F Flow Setting Unit is used as the calibration equipment for a system conforming to System 2. Calibration in such a system is to be manually operated. So, you have to operate the valve of the Flow Setting Unit each time calibration is made (starting and stopping the calibration gas flow and adjusting the flow rate). For the operation of the converter, refer to Section 7.11. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <10. Other Functions> 10.6.1 10-24 Preparation Before Calibration To operate the ZA8F Flow Setting Unit, prepare for calibration as follows: (1) Check for a complete closing of the zero gas flow setting valve in the unit and open the regulator valve for the zero gas cylinder until the secondary pressure is sample gas pressure plus approx. 50 kPa (or sample gas pressure plus approx. 150 kPa when a check valve is used, maximum pressure rating is 300 kPa ). (2) Check that the oxygen concentration of the zero gas and span gas (instrument air 21 vol% O2) in the cylinder is set for the converter. 10.6.2 Operating the Span Gas Flow Setting Valve The following description is given assuming that instrument air, the same as the reference gas, is used as the span gas. For more details, see Section 7.11.2, “Manual Calibration,” earlier in this manual. (1) When “OPEn” and the “measured oxygen concentration” appear alternately during the span calibration, open the span gas flow setting valve of the flow setting unit and adjust the flow rate to 600 ± 60 ml/min. Loosen the lock nut if the valve shaft has a lock nut, and turn the valve regulator slowly counterclockwise. To check the flow rate, use the calibration flowmeter. If the sample gas pressure is extremely high, adjust the sample gas pressure to obtain pressures (listed in Table 10.9) ± 10%. Table 10.9 Sample gas pressure, (kPa) 50 100 150 200 250 Flow rate, (ml/min) 500 430 380 350 320 (2) Adjust the flow rate. After the measured oxygen concentration has stabilized, touch the [ENT] key, then all the digits will flash. Touch the [ENT] key again to display “ZEro Y.” (3) Close the span gas flow setting valve to stop the span gas (air) flow. If the valve shaft has a lock nut, be sure to tighten the lock nut to prevent any leakage of span gas into the sensor during measurement. 10.6.3 Operating the Zero Gas Flow Setting Valve Operate the zero gas flow setting valve during zero calibration in the following procedures: (1) When the “OPEn” and the “measured oxygen concentration” appear alternately during calibration, open the zero gas flow setting valve of the flow setting unit and adjust the flow rate to 600 ± 60 ml/min. To rotate the valve shaft, loosen the lock nut if the valve shaft has a lock nut and slowly turn it counterclockwise. (2) To check the flow rate, use an appropriate calibration gas flowmeter. If the sample gas pressure is extremely high, adjust the sample gas pressure to obtain pressures (listed in Table 10.9) ± 10%. (3) Adjust the flow rate. After the measured oxygen concentration is stabilized, touch the [ENT] key, then all the digits will flash. Touch the [ENT] key again to flash “CAL End.” (4) Close the zero gas flow setting valve to stop the zero gas flow. Be sure to tighten the lock nut if the valve shaft has a lock nut to prevent any leakage of zero gas into the sensor during measurement. When the stabilization time elapses, the zero calibration will be complete. 10.6.4 Treatment After Calibration No special treatment of the instrument is needed after calibration. However, it is recommended that the pressure regulator for the zero gas cylinders be closed because calibration is not required so often. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <11. Inspection and Maintenance> 11-1 11. Inspection and Maintenance This chapter describes the inspection and maintenance procedures for the EXAxt ZR Zirconia Oxygen/Humidity Analyzer to maintain its measuring performance and normal operating conditions. WARNING Do NOT touch the probe if it has been in operation immediately just before being checked. (The sensor at the tip of the probe heats up to 750°C during operation. If you touch it, you will get burned.) CAUTION When checking the detector, carefully observe the following: • Do not subject the probe to shock or cool it rapidly. The sensor is made of ceramic (zirconia). If the detector is dropped or bumped into something, the sensor may be damaged and no longer work. • Do not reuse a metal O-ring to seal the cell assembly. If you replace the cell or remove it from the probe for checking, be sure to replace the metal O-ring. Otherwise, the furnace gas may leak, and then the leaking corrosive gas will cause the built-in heater or thermocouple to disconnect, or the detector may corrode. • Handle the probe with care so that the dust filter mounted screws on the tip of the probe do not hurt your finger(s). • Before opening or closing the terminal box, first remove dust, sand, or the like from the terminal box cover. 11.1 11.1.1 Inspection and Maintenance of the Detector Cleaning the Calibration Gas Tube The calibration gas, supplied through the calibration gas inlet of the terminal box into the detector, flows through the tube and comes out at the tip of the probe. The tube might become clogged with dust from the sample gas. If you become aware of clogging, such as when a higher pressure is required to achieve a specified flow rate, clean the calibration gas tube. To clean the tube, follow these steps: (1) Remove the detector from the installation assembly. (2) Following Section 11.1.2, later in this manual, remove the four bolts (and associated spring washers) that tighten the sensor assembly, and the pipe support as well as the U-shaped pipe with filter . (3) Use a rod 2 to 2.5 mm in diameter to clean the calibration gas tube inside the probe. In doing this, keep air flowing from the calibration gas inlet at about 600 ml/min and insert the rod into the tube (3-mm inside diameter). However, be careful not to insert the rod deeper than 40 cm. (4) Clean the U-shaped pipe. The pipe can be rinsed with water. However, it should be dried out thoroughly before reassembly. (5) Restore all components you removed for cleaning. Follow Section 11.1.2 to restore all components in their original positions. Be sure to replace the O-ring(s) with new ones. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <11. Inspection and Maintenance> Exploded view of components Rod (with outside diameter of 2 to 2.5 mm) 11-2 Calibration gas tube F11.1E.ai Figure 11.1 11.1.2 Cleaning the Calibration Gas Tube Replacing the Sensor Assembly The performance of the sensor (cell) deteriorates as its surface becomes soiled during operation. Therefore, you have to replace the sensor when its life expectancy expires, for example, when it can no longer satisfy a zero correction ratio of 100 ± 30% or a span correction ratio of 0 ± 18%. In addition, the sensor assembly is to be replaced if it becomes damaged and can no longer operate during measurement. If the sensor becomes no longer operable (for example, due to breakage), investigate the cause and remedy the problem as much as possible to prevent recurrence. CAUTION • If the sensor assembly is to be replaced, allow enough time for the detector to cool down from its high temperature. Otherwise, you may get burned. • If the cell assembly is to be replaced, be sure to replace the metal O-ring and the contact together. Additionally, even in a case where the cell is not replaced, if the contact becomes deformed and cannot make complete contact with the cell, replace the contact. • If there is any corroded or discolored area in the metal O-ring groove in which the contact is embedded, sand the groove with sandpaper or use a metal brush, and then sand further with a higher grade of sandpaper (No. 1500 or so), or use an appropriate metal brush to eliminate any sharp protrusions on the groove. The contact’s resistance should be minimized. • Use cell assemblies manufactured in or after Sept. 2000: the serial number on the side of the cell assembly should be 0J000 or later (for example: 0K123, 1AA01 etc.) 1. Identifying parts to be replaced In order not to lose or damage disassembled parts, identify the parts to be replaced from among all the parts in the sensor assembly. Normally, replace the sensor (cell), metal O-ring and contact together at the same time. If required, also replace the U-shaped pipe, bolts, filter and associated spring washers. 2. Removal procedures (1) Remove the four bolts and associated washers from the tip of the detector probe. (2) Remove the U-shaped pipe support together with the U-shaped pipe. Remove the filter also. (3) Pull the sensor assembly toward you while turning it clockwise. Also, remove the metal O-ring between the assembly and the probe. (When replacing the assembly, be careful not to allow any flaws on the tip of the probe with which the metal O-ring comes in contact (the surface with which the sensor flange also comes in contact. Otherwise, the sample gas will not be sealed.) (4) Use tweezers to pull the contact out of the groove. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <11. Inspection and Maintenance> 11-3 (5) Clean the sensor assembly, especially the metal O-ring contact surface to remove any contaminants adhering to that part. If you can use any of the parts from among those removed, also clean them up to remove any contaminants adhering to them. (Once the metal O-ring has been tightened, it can no longer be used. So, be sure to replace it.) 3. Part assembly procedure (1) First, install the contact. Being careful not to cause irregularities in the pitch of the coil spirals (i.e., not to bend the coil out of shape), place it in the ringed groove properly so that it forms a solid contact. Groove in which the contact (E7042BS) is placed F11.2E.ai Figure 11.2 Installing the Contact (2) Next, make sure that the O-ring groove on the flange surface of the sensor (cell) is clean. Install the metal O-ring in that O-ring groove, and then insert the sensor (cell) in the probe while turning it clockwise. After inserting it until the metal O-ring comes in contact with the probe’s O-ring contact surface, properly align the U-shaped-pipe insertion holes with the bolt openings. (3) Attach the U-shaped pipe to its support, then fully insert the U-shaped pipe, filter and its support into the probe. (4) Coat the threads of the four bolts with antiseize grease and then screw them in along with the washers. First, tighten the four bolts uniformly by hand, and then use a torque wrench to tighten all areas of the metal O-ring uniformly, that is, to make sure the sensor flange is perfectly horizontal to the O-ring’s working face in the probe. This is done by tightening first one bolt and then its opposing bolt each 1/8 turn, and then one of the other bolts followed by its opposing bolt, each also 1/8 turn. This continues in rotating fashion until they are all fully tightened with the torque wrench preset to approximately 5.9 Nm. If they are not uniformly tightened, the sensor or heater may be damaged. Check with light that there is no gap between sensor flange and probe. Replacement of the sensor assembly is now complete. Install the detector and restart operation. Calibrate the instrument before making a measurement. IM 11M12A01-04E 10th 10thEdition Edition: :May Aug.14,2015-00 19, 2017-00 11-4 <11. Inspection and Maintenance> Metal O-ring Sensor (cell) Dust filter (optional) Bolts (four) U-shaped pipe support Contact Probe Filter U-shaped pipe Washers (four) 1/8 turn – tighten bolts 1/8 turn (approximately 45°) each Figure 11.3 F11.3E.ai Exploded View of Sensor Assembly NOTE Optional Inconel bolts have a high coefficient of expansion. If excess torque is applied while the bolts are being tightened, abnormal strain or bolt breakage may result. So, tighten the bolts following the instructions given above. 11.1.3 Replacement of the Heater Assembly This section describes the replacement procedure for the heater assembly. The sensor or ceramic heater-furnace core internal structure is subject to fracturing, so do NOT subject it to strong vibrations or shock. Additionally, the heater assembly reaches high temperatures and is subjected to high voltages. So, maintenance services should be performed after the power is off and the heater assembly temperature has returned to normal room temperature. For details, refer to IM 11M12A01-21E “ Heater Assembly “. NOTE If the heater assembly can not be removed because a screw for the heater assembly fixation has fused to its thread, one of our service representatives can fix it. IM 11M12A01-04E 10th Edition : May 19, 2017-00 11-5 <11. Inspection and Maintenance> 16 A 11 10 14 12 A 13 15 24 8 9 24 7 5 4 6 3 24 2 1 23 View A-A 18 17 25 19 13 22 14 Figure 11.4 20 21 F11.4E.ai Exploded View of Detector IM 11M12A01-04E 10th Edition : May 19, 2017-00 <11. Inspection and Maintenance> 11-6 Replacement of heater assembly Refer to Figure 11.4 as an aid in the following discussion. Remove U-shaped pipe support 4 , U-shaped pipe 5 , Filter and the sensor (cell) 6 , following Section 11.1.2, earlier in this manual. Remove the two screws 15 that tighten the cover 12 and slide it to the flange side. Remove the four bolts 10 to remove the converter 16 . Then remove the three connectors to which leadwire from the heater and thermocouple is connected. Loosen screw 19 until heater assembly 23 plate can be removed. There’s no need to remove O-ring 18 which prevents screw 19 from dropping out. Pull out connector 13 . Loosen and remove the screw for the heater assembly fixation 8 with a special wrench (part no. K9470BX or equivalent) and then remove the heater assembly 23 from the detector 24 . To reassemble the heater assembly, reverse the above procedure: Insert the heater assembly 23 into the detector 24 , while inserting the calibration pipe in the detector 24 into the heater section in the heater assembly 23 as well as in the bracket hole. Coat the screw for the heater assembly fixation 8 with grease (Never-Seez: G7067ZA) and tighten the screw for the heater assembly fixation 8 with a special tool (part no. K9470BX or equivalent) with a tightening torque of 12N·m ± 10%. Next, to install the O-rings 22 on the calibration-gas and reference-gas pipes, disassemble the connector 13 in the following procedure: First, remove the screw 25 and then remove the plate 17 and two caps 20 . If the O-ring 22 remains in the hole, pull them out from the back. Pass the heater and thermocouple leadwire through the connector 13 . Also, pass the calibration gas and reference gas pipes through the opening of the connector 13 . If the O-ring 22 fails, replace it with a new one. Push the two caps 20 into the associated opening of the connector 13 . Insert the plate 17 , aligning it with the groove of the cap 20 , and tighten it with the screw 25 . If you attempt to insert the calibration gas and reference gas pipes into the connector 13 without disassembling the connector 13 , the O-ring may be damaged. Tighten screw 19 in the heater assembly 23 until connector 13 can’t move. Reassemble in reverse order to the above disassembly procedure. When installing the cell assembly 6 , replace the metal O-ring 7 with a new one. 11.1.4 Replacement of Dust Filter Set the dust filter 1 in place using a special pin spanner (with a pin 4.5 mm in diameter: part no. K9471UX or equivalent). If a dust filter that has already been replaced once is used again, apply grease (Never-Seez: G7067ZA) to the threads of the dust filter. 11.1.5 Replacement of O-ring The detector uses three different types of O-rings 14 , 24 , and 22 . One O-ring alone 14 , or two O-rings 21 and 22 are used. (For a pressure compensating model, two O-rings are used for individual uses. Two O-rings 21 and 22 are used for reference gas sealing and require periodic replacement. Part No. Description (7) K9470BJ Metal O-ring (14) K9470ZS O-ring with grease (21) (22) K9470ZP Two pairs of O-rings with grease IM 11M12A01-04E 10th Edition : May 19, 2017-00 <11. Inspection and Maintenance> 11.1.6 11-7 Stopping and Re-starting Operation When operation is stopped, take care of the followings so that the sensor of the detector cannot become unused. CAUTION When operating an instrument such as boiler or industrial furnace is stopped with the zirconia oxygen analyzer operation, moisture can condensate on the sensor portion and dusts may stick to it. If operation is restarted in this condition, the sensor which is heated up to 750°C firmly fixes the dusts on itself. Consequently, the dusts can make the sensor performance very lower. If a large amount of water is condensed, the sensor can be broken and never be used. To prevent the above nonconformity, take the following action when stopping operation. (1) If possible, keep on supplying the power to converter and flowing reference gas to the sensor. If impossible to do the above, remove the detector. (2) If unavoidably impossible to supply the power and removing the detector, keep on following air at 600 ml/min into the calibration gas pipe. When restarting operation, be sure to flow air, for 5-10 minutes, at 600 ml/min into the calibration gas pipe before supplying the power to converter. 11.2 Inspection and Maintenance of the Converter The converter does not require routine inspection and maintenance. If the converter does not work properly, in most cases it probably comes from problems or other causes. n Replacing Fuses This equipment incorporates a fuse. If the fuse blows out, turn off the equipment power and replace it in the following procedure. CAUTION If a replaced fuse blows out immediately, there may be a problem in the circuit. Check the circuit carefully to find out why the fuse has blown. Before removing the electronics, touch the grounded metal part to discharge any static electricity. (1) Remove the display cover (Figure 11.5). (2) Remove the three screws that are located toward you, among the four screws shown in Figure 11.6. Loosen the remaining one. (3) Move the electronics up to remove it. IM 11M12A01-04E 10th Edition : May 19, 2017-00 11-8 <11. Inspection and Maintenance> SCREW Cover of Display F11.5E.ai Figure 11.5 Cover of Display F11.6E.ai Figure 11.6 Location of Screw (4) Disconnect the three connectors from the printed-circuit board, as shown in Figure 11.7, by holding the connector housing. Do not pull the leadwire out to remove the connectors, otherwise, disconnection may result. (5) Remove the electronics completely to gain access to the fuse on the bottom of the equipment case (Figure 11.8). (6) Replace the fuse with a new one. F11.7E.ai Figure 11.7 Locations of Connectors F11.8E.ai Figure 11.8 Location of Fuse (7) To restore the electronics, reverse the above removal procedures. When restoring the electronics, do not get leadwire jammed in any part of the unit. (8) Place the electronics and the printed-circuit board on which the fuse is installed properly; these are directly connected with connectors. (9) Tighten the four screws in their positions. (10) Replace and tighten the display cover properly. If the cover is not tightened sufficiently, the infrared switches will not operate correctly. n Fuse rating Check the rating of the fuse and that it satisfies the following : Maximum rated voltage : 250 V Maximum rated current : 3.15 A Type : Time-lag fuse Standards : UL-, CSA- and VDE-approved Part number : A1113EF IM 11M12A01-04E 10th Edition : May 19, 2017-00 <11. Inspection and Maintenance> 11.3 11-9 Replacement of Flowmeter for ZR20H Automatic Calibration Unit (1) Remove pipe holding piping fitting (2) Remove bolts holding flowmeter, and replace it. A white back plate (to make the float easy to see) is attached. The end of the pin holding down the back plate must be on the bracket side. (3) Replace piping, and fix M6 bolts between brackets. *1 *1 : When disassembling and reassembling, mark original positions, and tighten an extra 5-10° when reassembling. After tightening, do a liquid leakage test. Connect piping pairs A-A9, B-B9, C-C9, D-D9 Vertical mounting A C B Fixing screw pairs A' B' C' Horizontal mounting A B C Zr20h_g0.ai Figure 11.9 Fixing Flowmeter IM 11M12A01-04E 10th Edition : May 19, 2017-00 Blank Page <12. Troubleshooting> 12-1 12. Troubleshooting This chapter describes errors and alarms detected by the self-diagnostic function of the converter. This chapter also describes the check and restoration methods to use when problems other than the above occur. 12.1 Displays and Measures to Take When Errors Occur 12.1.1 What is an Error? An error is detected if any abnormality is generated in the detector or the converter, e.g., in the cell (sensor) or heater in the detector, or the internal circuits in the converter. If an error occurs, the converter performs the following: (1) Stops the supply of power to the heater in the detector to insure system safety. (2) Causes an error indication in the display to start blinking to notify of an error generation (Figure 12.1). (3) Sends an output contact if the error is set up for “Output contact setup” for that contact (refer to Section 8.4, “Output Contact Setup”). (4) Changes the analog output status to the one set in “Output hold setting” (refer to Section 8.2, “Output Hold Setting”). When the display shown in Figure 12.1 appears, pressing the error indication brings up a description of the error (Figure 12.2). The content of errors that are displayed include those shown in Table 12.1. Displayed alternately Err-01 --------F12.1E.ai Figure 12.1 Table 12.1 Types of Errors and Reasons for Occurrence Error Type of error Reason for Occurrence Error-1 Cell voltage failure The cell (sensor) voltage signal input to the converter falls below -50 mV. Error-2 Heater temperature failure The heater temperature does not rise during warm-up, or it falls below 730 °C or exceeds 780 °C after warm-up is completed. Error-3 A/D converter failure The A/D converter fails in the internal electrical circuit in the converter. Error-4 Memory failure Data properly are not written into memory in the internal electrical circuit in the converter. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12.1.2 12-2 Measures to Take When an Error Occurs n Error-1: Cell Voltage Failure Error-1 occurs when the cell (sensor) voltage input to the converter falls below -50 mV (corresponding to about 200% O2). The following are considered to be the causes for the cell voltage falling below -50 mV: (1) Continuity failure between the cell assembly electrode and the contact (2) Damage or deterioration of the cell assembly (3) Improper connection between the sensor and the electronics. (4) Wiring failure inside the detector (5) Abnormality in the converter electronics 1) Turn off the power to the equipment. 2) Remove the cell assembly from the probe. Check for dirty or corroded sensor parts, including electrode and contact. 3) If the contact part is normal, the cell assembly may be damaged or deteriorated. Replace the cell assembly. In this case, be sure to replace the metal O-ring and contact. 4) If Error-1 still occurs, check that the sensor and the electronics are properly connected. 5) Remove the probe to gain access to the two connectors (four connectors for the optional automatic calibration unit), as indicated in Figure 12.2. Check these connectors are properly connected. 6) If Error-1 still occurs, the electronics may be defective. Contact your local Yokogawa service or sales representative. n Error-2: Heater Temperature Failure This error occurs if the detector heater temperature does not rise during warm-up, or if the temperature falls below 730°C or exceeds 780°C after warm-up is completed. Causes considered for cases where Error-2 occurs independently are shown below. (1) Faulty heater in the probe (heater wire breakage) (2) Faulty thermocouple in the probe (3) Failure in the converter electronics (1) Turn off the power to the analyzer. (2) Remove the probe from the analyzer. Also remove all the connectors between the converter and probe. Measure the resistance of the heater wire (yellow wire) from the probe as indicated in Figure 12.2. The heater assembly is normal if the resistance is lower than about 90Ω. If the resistance is higher than that value, the heater assembly may be defective. In this case, replace the heater assembly (refer to Section 11.1.3, “Replacement of the Heater Assembly”). Heater wire Multimeter (Ω) F12.2E.ai Figure 12.2 IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12-3 (3) Next, check the resistance of the thermocouple from the probe. Use a multimeter to measure the thermocouple resistance between terminal 3 (red cable connected) and terminal 4 (white cable connected) as indicated in Figure 12.3. The thermocouple is normal if the resistance is 5Ω or less. If the value is higher than 5Ω, the thermocouple wire may be broken or about to break. In this case, replace the heater assembly (refer to Section 11.1.3, “Replacement of the Heater Assembly”). CAUTION Measure the thermocouple resistance value after the difference between the probe tip temperature and the ambient temperature decreases to 50°C or less. If the thermocouple voltage is large, accurate measurement cannot be achieved. Thermocouple YEL GRN RED WHT 1 2 3 4 Multimeter (Ω) F12.3E.ai Figure 12.3 (4) If the inspection indicates that the thermocouple is normal, the electronics may be defective. Consult your local Yokogawa service or sales representative. n Error-3: A/D Converter Failure/Error-4: Writing-to-memory Failure • A/D Converter Failure It is suspected that a failure has occurred in the A/D converter mounted in the converter electronics. • Writing-to-memory Failure It is suspected that a failure has occurred in an operation writing to the memory (EEPROM) mounted in the converter electronics. Turn off the power to the converter once and then restart the converter. If the converter operates normally after restarting, an error might have occurred due to a temporary drop in the voltage (falling below 85 V, the least amount of voltage required to operate the converter) or a malfunction of the electronics affected by noise. Check whether or not there is a failure in the power supply system or whether the converter and detector are securely grounded. If the error occurs again after restarting, a failure in the electronics is suspected. Consult the service personnel at Yokogawa Electric Corporation. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12.2 12.2.1 12-4 Displays and Measures to Take When Alarms are Generated What is an Alarm? When an alarm is generated, the alarm indication blinks in the display to notify of the alarm (Figure 12.3). Pressing the alarm indication displays a description of the alarm. Alarms include those shown in Table 12.2. Displayed alternately AL-06 21.0% F12.4E.ai Figure 12.4 Table 12.2 Alarm Types of Alarms and Reasons for Occurrence Type of alarm Reason for occurrence Alarm 1 through 3 Oxygen concentration alarm concentration alarm humidity, and mixing ratio alarms Occurs when a measured value exceed or falls below the set alarm value (refer to Section 8.3, "Setting Alarms"). Alarm 6 Zero calibration coefficient alarm Generated when the zero correction ratio is out of the range of 100 ± 30% in automatic and semi-automatic calibration (refer to Section 9.1.4, Compensation). Alarm 7 Span calibration coefficient alarm Generated when the span correction ratio is out of the range of 0 ± 18% in automatic and semi-automatic calibration (refer to Section 9.1.4, "Compensation"). Alarm 8 EMF stabilization time-up Generated when the cell (sensor) voltage is not stabilized even after the calibration time is up in automatic and semi-automatic calibration. Alarm 10 Cold junction temperature alarm Occurs when an equipment internal temperature exceeds 85°C. Alarm 11 Thermocouple voltage alarm Generated when thermocouple voltage exceeds 42.1 mV (about 1020°C ) or falls below -5 mV (about -170°C). Alarm 13 Battery low alarm Internal battery needs replacement If an alarm is generated, such measures as turning off the heater power are not carried out. The alarm is released when the cause for the alarm is eliminated. However, Alarm 10 and/or Alarm 11 may be generated at the same time as Error-2 (heater temperature error). In such a case, the measure taken for this error has priority. If the converter power is turned off after an alarm is generated and restarted before the cause of the alarm has been eliminated, the alarm will be generated again. However, Alarms 6, 7, and 8 (alarms related to calibration) are not generated unless calibration is executed. 12.2.2 Measures Taken When Alarms are Generated l Alarm 1 through 3: Oxygen Concentration Alarm, Humidity, and Mixing Ratio Alarms This alarm is generated when a measured value exceeds an alarm set point or falls below it. For details on the oxygen concentration alarm, see Section 8.3, “Setting Alarms,” in the chapter on operation. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12-5 l Alarm 6: Zero Calibration Coefficient Alarm In calibration, this alarm is generated when the zero correction ratio is out of the range of 100 ± 30% (refer to Section 9.1.4, “Compensation”). The following can be considered the causes for this: (1) The zero gas oxygen concentration does not agree with the value of the zero gas concentration set (refer to Section 9.2,“Calibration Procedures.)” Otherwise, the span gas is used as the zero gas. (2) The zero gas flow is out of the specified flow (600 ± 60 ml/min). (3) The sensor assembly is damaged and so cell voltage is not normal. (1) Confirm the following and carry out calibration again: If the items are not within their proper states, correct them. a. If the indication for “Zero gas conc.” is selected in “Calibration setup,” the set value should agree with the concentration of zero gas actually used. b. The calibration gas tubing should be constructed so that the zero gas does not leak. (2) If no alarm is generated as a result of carrying out re-calibration, it is suspected that improper calibration conditions were the cause of the alarm in the preceding calibration. In this case, no specific restoration is necessary. (3) If an alarm is generated again as a result of carrying out re-calibration, deterioration of or damage to the cell (sensor) is suspected as the cause of the alarm. Replacement of the cell (sensor) with a new one is necessary. However, before replacement, carry out the following: Check the cell voltages when passing the zero gas and span gas. a. Display the cell voltage with the parameter code A11. b. Check whether or not the value of the displayed cell voltage is very different from the theoretical value at each oxygen concentration. Confirm the theoretical values of the cell voltage in Table 12.3. Although it cannot be generally specified as to what extent the difference from the theoretical value is allowed, consider it to be approximately ±10 mV. Table 12.3 Oxygen Concentration and Cell Voltage Oxygen concentration Oxygen concentration (% O2) Cell voltage (mV) 1% 67.1 21% 0 (4) Confirm whether deterioration of or damage to the sensor assembly that caused the alarm has occurred abruptly during the current calibration in the following procedure: Check the history of the span gas correction ratio with the parameter codes A50 through A59, Check the history of the zero gas correction ratio with the parameter codes A60 through A69. The larger the parameter code number, the older the displayed data. Changes in deterioration of the sensor can be seen. (5) If deterioration of the cell assembly has occurred abruptly, it may show that the check valve, which prevents moisture in the furnace from getting into the calibration gas tubing, has failed. If the gas in the furnace gets into the calibration gas tubing, it condenses and remains in the gas tubing. The cell assembly is considered to be broken for the reason that the condensation is blown into the cell assembly by the calibration gas during calibration and so the cell cools quickly. (6) If the cell assembly has been gradually deteriorating, check the cell assembly status in the following procedure: a. D  isplay “Cell resistance” by specifying the parameter code A21. A new cell will show a cell resistance value of 200Ω or less. On the other hand, a cell (sensor) that is approaching the end of its service life will show a resistance value of 3 to 10 kΩ. b. Display “Cell robustness” by specifying the parameter code A22. A good cell (sensor) will show “5,” “Life > 1 year” (refer to Section 10.1.17). IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12-6 l Alarm 7: Span Calibration Coefficient Alarm In calibration, this alarm is generated when the span gas correction ratio is out of the range of 0 ± 18% (refer to Section 9.1.4, “Compensation”). The following are suspected as the cause: (1) The oxygen concentration of the span gas does not agree with the value of the span gas set “Calibration setup.” (2) The flow of the span gas is out of the specified flow value (600 ± 60 ml/min). (3) The cell assembly is damaged and the cell voltage is abnormal. (1) Confirm the following and carry out calibration again: If the items are not within their proper states, correct them. a. If the display “Span gas conc.” is selected in “Calibration setup,” the set value should agree with the concentration of span gas actually used. b. The calibration gas tubing should be constructed so that the span gas does not leak. (2) If no alarm is generated as a result of carrying out re-calibration, it is suspected that improper calibration conditions were the cause of the alarm in the preceding calibration. In this case, no specific restoration is necessary. (3) If an alarm is generated again as a result of carrying out re-calibration, deterioration of or damage to the cell (sensor) is suspected as the cause of the alarm. Replacement of the cell with a new one is necessary. However, before replacement, carry out the procedure described in step (3) and later of in Section 12.2.2.2, “Alarm 6: Zero Calibration Coefficient Alarm.” l Alarm 8: EMF Stabilization Time Over This alarm is generated if the sensor (cell) voltage has not stabilized even after the calibration time is up for the reason that the calibration gas (zero gas or span gas) has not filled the sensor assembly of the detector. (1) The flow of the calibration gas is less than normal (a specified flow of 600 ± 60 ml/min). (2) The length or thickness of the calibration gas tubing has been changed (lengthened or thickened). (3) The measuring gas flows toward the tip of the probe. (4) The sensor (cell) response has deteriorated. (1) Carry out calibration by passing the calibration gas at the specified flow (600 ± 60 ml/min) after checking that there is no leakage in the tubing. (2) If calibration is carried out normally, perform a steady operation without changing the conditions. If the error occurs again, check whether or not the reason is applicable to the following and then replace the sensor assembly. • A lot of dust and the like may be sticking to the tip of the sensor. If dust is found, clean and remove the dust (see Section 11.1.1). In addition, if an error occurs in calibration even after the cell assembly is replaced, the influence of sample gas flow may be suspected. Do not let the sample gas flow toward the tip of the detector probe, for example, by changing the mounting position of the detector. l Alarm 10: Cold Junction Temperature Alarm The equipment incorporates a temperature sensor. An alarm is issued when the sensor temperature exceeds 85°C. If internal temperature of this equipment exceeds 85°C, the electronics may fail. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12-7 This equipment can be used at ambient temperatures up to 55°C. If the ambient temperatures may exceed the limits, take appropriate measures such as applying heat insulating material to the furnace walls, and adding a sun shield to keep out direct sunlight. If this alarm occurs even when the ambient temperature is under 55°C, the electronics may be defective. Contact your local Yokogawa service or sales representative. l Alarm 11: Thermocouple Voltage Alarm This alarm is generated when the emf (voltage) of thermocouple falls below -5 mV (about -170°C) or exceeds 42.1 mV (about 1020°C). (1) A failure of the thermocouple at the detector occurred. (2) A failure of the electrical circuits occurred. (1) Turn off the power to the analyzer. (2) Remove the probe from the analyzer. Also remove all the connectors between the converter and probe. Measure the resistance of the heater wire (yellow wire) from the probe as indicated in Figure 12.5. The heater assembly is normal if the resistance is lower than about 90Ω. If the resistance is higher than that value, the heater assembly may be defective. In this case, replace the heater assembly (refer to Section 11.1.3, “Replacement of the Heater Assembly”). Heater wire Multimeter (Ω) F12.2E.ai Figure 12.5 (3) Next, check the resistance of the thermocouple from the probe. Use a multimeter to measure the thermocouple resistance between terminal 3 (red cable connected) and terminal 4 (white cable connected) as indicated in Figure 12.6. The thermocouple is normal if the resistance is 5Ω or less. If the value is higher than 5Ω, the thermocouple wire may be broken or about to break. In this case, replace the heater assembly (refer to Section 11.1.3, “Replacement of the Heater Assembly”). CAUTION Measure the thermocouple resistance value after the difference between the probe tip temperature and the ambient temperature decreases to 50°C or less. If the thermocouple voltage is large, accurate measurement cannot be achieved. Thermocouple YEL GRN RED WHT 1 2 3 4 Multimeter (Ω) F12.3E.ai Figure 12.6 (4) If the inspection indicates that the thermocouple is normal, the electronics may be defective. Consult your local Yokogawa service or sales representative. IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12-8 l Alarm 13: Battery Low Alarm An internal battery is used as backup for the clock. After this alarm occurs, removing power from the instrument may cause the clock to stop but should not affect stored parameters. The internal clock is used for calibration and purge scheduling; if you use this then after a battery alarm occurs (until the battery is replaced) be sure to check / correct the date and time every time you turn on the power. When the battery low alarm occurs, remember that the battery cannot be replaced by the user. Contact your Yokogawa service representative. NOTE Battery life varies with environmental conditions. * If power is applied to the instrument continuously, then the battery should not run down, and life is typically about ten years. However the battery will be used during the time interval between shipment from the factory and installation. * If power is not applied to the instrument, at normal room temperatures of 20 to 25°C then battery life is typically 5 years, and outside this range but within the range -30 to +70°C then battery life is typically 1 year. 12.3 Measures When Measured Value Shows an Error The causes that the measured value shows an abnormal value is not always due to instrument failures. There are rather many cases where the causes are those that measuring gas itself is in abnormal state or external causes exist, which disturb the instrument operation. In this section, causes of and measures against the cases where measured values show the following phenomena will be described. (1) The measured value is higher than the true value. (2) The measured value is lower than the true value. (3) The measured value sometimes shows abnormal values. 12.3.1 Measured Value Higher (Lower for Humidity Analyzer) Than True Value (1) The measuring gas pressure becomes higher. The measured oxygen concentration value X (vol% O2) is expressed as shown below, when the measuring gas pressure is higher than that in calibration by Dp (kPa). X=Y [ 1+ (Dp/101.30) ] where Y: Measured oxygen concentration value at the same pressure as in calibration (vol% O2). Where an increment of the measured value by pressure change cannot be neglected, measures must be taken. Investigate the following points to perform improvement available in each process. Is improvement in facility’s aspect available so that pressure change does not occur? Is performing calibration available under the average measuring gas pressure (internal pressure of a furnace)? IM 11M12A01-04E 10th Edition : May 19, 2017-00 <12. Troubleshooting> 12-9 (2) Moisture content in a reference gas changes (increases) greatly. If air at the detector installation site is used for the reference gas, large change of moisture in the air may cause an error in measured oxygen concentration value (vol% O2). When this error is not ignored, use a gas in which moisture content is constant such as instrument air in almost dry condition as a reference gas. In addition, change of moisture content in exhaust gas after combustion is also considered as a cause of error. However, normally this error is negligible. (3) Calibration gas (span gas) is mixing into the sensor due to leakage. If the span gas is mixing into the sensor due to leakage as a result of failure of the valve provided in the calibration gas tubing system, the measured value shows a value a little higher than normal. Check valves (needle valves, check valves, solenoid valves for automatic calibration, etc.) in the calibration gas tubing system for leakage. For manual valves, check them after confirming that they are in fully closed states. In addition, check the tubing joints for leakage. (4) The reference gas is mixing into the measuring gas and vice versa. Since the difference between oxygen partial pressures on the sensor anode and cathode sides becomes smaller, the measured value shows a higher value. An error which does not appear as the Error-1 may occur in the sensor. Sample gas and/or the reference gas may be leaking. Visually inspect the sensor. If any crack is found, replace the sensor assembly with a new one. (Note) Data such as cell robustness displayed in the detailed data display should also be used for deciding sensor quality as references. 12.3.2 Measured Value Lower (Higher for Humidity Analyzer) Than True Value (1) The measuring gas pressure becomes lower. Where an increment of the measured value due to pressure change cannot be neglected, take measures referring to subsection 12.3.1 (1). (2) Moisture content in a reference gas changes (decreases) greatly. If air at the analyzer installation site is used for the reference gas, large change of moisture content in the air may cause an error in measured oxygen concentration value (vol% O2). When this error is not ignored, use a gas in which moisture content is constant such as instrument air in almost dry condition as a reference gas. In addition, change of moisture content in exhaust gas after combustion is also considered as a cause of error. However, normally this error is negligible. (3) Calibration gas (zero gas) is mixed into the sensor due to leakage. If the zero gas is mixed into the detector due to leakage as a result of failure of the valve provided in the calibration gas tubing system, the measured value shows a value a little lower than normal. Check valves (needle valves, check valves, solenoid valves for automatic calibration, etc.) in the calibration gas tubing system for leakage. For manual valves, check them after confirming that they are in fully closed states. (4) Combustible components exist in the sample gas. If combustible components exist in the sample gas, they burn in the sensor and thus oxygen concentration decreases. Check that there are no combustible components. (5) Temperature of the sensor cell reaches 750 °C or more. If the sensor temperature is 750°C or higher, this may indicate that sample gas has leaks into the reference gas side, corrosion. Also check that the thermocouple resistance is no greater than 15Ω. IM 11M12A01-04E 10th Edition : May 19, 2017-00 12.3.3 <12. Troubleshooting> 12-10 Measurements Sometimes Show Abnormal Values (1) Noise may be mixing in with the converter from the detector output wiring. Check whether the equipment is securely grounded. Check whether or not the signal wiring is laid along other power cords. (2) The converter may be affected by noise from the power supply. Check whether or not the converter power is supplied from the same outlet, switch, or breaker as other power machines and equipment. (3) Combustible components in the sample gas may be getting into the sensor. If the combustible components show signs of dust, the abnormality may be improved by mounting a dust filter K9471UA. (4) There may be a crack in the sensor or leakage at the sensor-mounting portion. If the indication of concentration varies in synchronization with the pressure change in the furnace, check whether or not there is a crack in the sensor or whether the sensor flange is sticking tightly to the probe-attaching face with the metal O-ring squeezed. (5) There may be leakage in the calibration gas tubing In the case of a negative furnace inner pressure, if the indication of concentration varies with the pressure change in the furnace, check whether or not there is leakage in the calibration gas tubing. IM 11M12A01-04E 10th Edition : May 19, 2017-00 Customer Maintenance Parts List Model ZR202G Zirconia Oxygen/Humidity Analyzer (Integrated type) 1 ZR202A Heater Assembly 7 2 3 6 5 10 4 Item 1 2 3 4 5 6 7 8 9 10 11 9 8 11 Part No. Qty K9471UA --G7109YC K9470BK E7042DW 1 4 --K9470ZF K9470ZG E7042BR K9470BM 1 K9473AN --ZR01A01-01 ZR01A01-02 ZR01A01-05 1 1 ZR01A01-10 E7042BS K9470BJ E7042AY --K9470ZK K9470ZL 4 1 1 1 1 1 1 ZR202G.ai Description Dust Filter (Option) Bolt (M5x12, SUS316 stainless steel) (M5x12, inconel) for Option code "/C" Washer (SUS316 stainless steel) Bolts and Washers G7109YC x 4 + E7042DW x 4 K9470BK x 4 + E7042DW x 4 for Option code "/C" Plate Pipe Pipe for Option code "/C" Cell Assembly 1 piece (E7042UD) 2 pieces 5 pieces 10 pieces Contact Metal O-ring Filter Calibration Tube Assembly Cal. Gas Tube Assembly Cal. Gas Tube Assembly for Option code "/C" All Rights Reserved, Copyright © 2000, Yokogawa Electric Corporation. Subject to change without notice. CMPL 11M12A01-04E 1st Edition : Aug. 2000 (YK) 9th Edition : Feb. 2016 (YK) Hood for ZR202G 1 ZR202G_F.ai Item 1 CMPL 11M12A01-04E Part No. K9472UF Qty 1 Description Hood 9th Edition : Feb. 2016 (YK) Customer Maintenance Parts List Model ZR20H Automatic Calibration Unit for Integrated type Zirconia Oxygen/Humidity Analyzer (ZR202G) SPAN IN REF IN ZERO IN 1 10PSI Qty Description 1 K9473XC 1 Flowmeter All Rights Reserved, Copyright © 2001, Yokogawa Electric Corporation. Subject to change without notice. NUPRO Part No. SS-2C2-10 Item CMPL 11M12A01-12E 1st Edition : Feb. 2001 (YK) 4th Edition : Feb. 2016 (YK) Customer Maintenance Parts List Model ZO21S Zirconia Oxygen Analyzer/ High Temperature Humidity Analyzer, Standard Gas Unit 1 2 3 Item Part No. Qty Description 1 ——— 1 Pump (see Table 1) 2 E7050BA 1 Zero Gas Cylinder (x6 pcs) 3 E7050BJ 1 Needle Valve Table 1 Power Pump AC 100 V 110 115 E7050AU AC 200 V 220 240 E7050AV All Rights Reserved, Copyright © 2000, Yokogawa Electric Corporation. Subject to change without notice. CMPL 11M3D1-01E 1st Edition : Jan. 2000 (YK) 4th Edition : Mar. 2011 (YK) i Revision Information  Manual Title : Model ZR202G Integrated type Oxygen/Humidity Analyzer  Manual No. : IM 11M12A01-04E May 2017/10th Edition Addition RoHS etc. (pages i, v, vii, 2-2) Feb. 2016/9th Edition Bound up with IM 11M12A01-05E. IM 11M12A01-05E is obsoleted version. Whole review. CMPL 11M12A01-04E and CMPL 11M12A01-12E are updated. Aug.2015/8th.Edition Revised section 2.1.1 Some spell error corrections and addtion of specification description. 2.1.2 “ZR202G Integrated type Zirconia Oxygen Analyzer”: Deleted the C-tick, Safety and EMC conforming standards. 2.4.3 “Stop Valve”: Changed of the weight and dimensions. 2.4.4 “Check Valve”: Changed of the weight. 5.1 “General” Table 5.1: Deleted cable type. “General”: Added “WARNING”. CMPL. “Customer Maintenance Parts List”: CMPL 11M12A01-04E is updated to 8th edition. Jan. 2012/7th Edition Revised and Corrected over all Sep. 2006/6th Edition Revised section 2.4.5 “Air Set,” Part No. K9473XH or K9473XJ, Standard Specification: Changed descriptions partly; “Air Set,”Part No. G7004XF or K9473XG, Standard Specification: Changed descriptions partly; 2.4.7 “Cylinder Regulator Valve (Part No. G7013XF or G7014XF)”, Standard Specifications; Changed descriptions partly and drawing; 5.3 “Wiring Power and Ground Terminals”: Added description in Figure 5.5; 5.3.2 “Wiring for Ground Terminals”: Added item (4); 7.4.5 “Changing Set Values”: Changed description in table (1); 7.9.2 “Checking Calibration Contact Output”: Changed description in table 7.10; 8.3.2 “Preference Order of Output Hold Value”: Deleted “or blow-back”; 8.3.3 “Output Hold Setting”: Table 8.5, Parameter code C06, “maintenance” should read “calibration”; 8.3.4 “Default Values”: Table 8.6, Deleted “or blow-back”; 8.5.1 “Output Contact”: Made some corrections; 8.5.2 “Setting Output Contact”: Table 8.10, Changed descriptions; WARNING: Deleted second warning; 9.2.2.2 “Semi-automatic Calibration”: Table 9.3, Added note; 10.4 Table 10.6, Contact-related Items in Group E. Deleted some codes; 12.2.1 “What is an Alarm?”: Table 12.2, Added Alarms 11 and 13; 12.2.2.2 Alarm 6: Changed descriptions; 12.2.2.3 Alarm 7: Changed descriptions; • p. 12-7 and 12-8, Added Sections 12.2.2.6 and 12.2.2.7; • CMPL Changed part numbers of Items 4, 12 and 13; 2.1.2 “ZR202G Integrated type Oxygen Analyzer” Safety and EMC conforming standard: Added Caution. 2.1.2 “ZR202G Integrated type Oxygen Analyzer” Model and Codes: Added Note. 8.3 “Output Hold Setting,” “Table 8.4 Analog Output Hold Setting”: Added Note. 8.3.3 “Output Hold Setting,” “Table 8.5 Parameter Codes for Output Holding”: Added Note. 10.4 “Reset,” “Table Output-related Items in Group C”: Added Note. Apr. 2005/5th Edition Revised section Introduction Added description regarding modification IM 11M12A01-04E 10th Edition : May 19, 2017-00 ii 1.2.1 “ System Components” Changed part numbers of air set in table 2.1.2 Changed safety and EMC conforming standards and paint colors 2.2.2 Changed Finish color 2.3 Added description “ Non CE Mark” 2.4.5 “ Air Set” Changed part numbers and drawing of air set 4.2.1 “ Piping Parts for System 2” Change part numbers of air set in Table 4.2 4.4.1 “ Piping Parts for a System using Detector with Pressure Compensation” Changed part numbers of air set in Table 4.3 July 2003/4th Edition Revised section Notation of flange specification unified Dust guard protector, G7004XF/K9473XG Air set added CMPL 11M12A01-04E Cell assembly parts no. changed, revised to 5th edition. Sep. 2001/3rd Edition Revised section 1.2 Model ZR202A Heater Assembly added 2.2.1 ZA8F Flow Setting Unit error corrected 2.7.8 Model ZR202A Heater Assembly added 8.6 Table 8.12 Input Contact Functions changed 11.1.3 Reference document added to Replacement of the Heater Assembly Heater Assembly added to CMPL 11M12A01-04E CMPL 11M12A01-04E Model ZR20H changed Mar. 2001/2nd Edition Revised section 1.1.3 Explanation changed in “System 3” example 1.2.1 ZR20H added to list of Equipment Models 2.1.2 Some changes to ZR202G Integrated type in MS code table, and notes added 2.2 Reference gas pressure of ZA8F with check valve changed, detailed explanation added to ZR20H Automatic Calibration Unit 3.3 Added detail to 3.3 Installation of ZR20H Automatic Calibration Unit 3.5 Corrected errors in Insulation Resistance Test Wiring Diagram 4.3 Added explanation for piping to System 3 example 6.1 Added Filter to 6.1 ZR202G Detector 6.2 Added Names and Functions to 6.2 ZR20H Automatic Calibration Unit 7.1 Air-set secondary pressure with check valve changed 7.10.2 Reference gas pressure of ZA8F with check valve changed 10.6.1 Reference gas pressure of ZA8F with check valve changed 11.1 Added Filter to 11.1 Inspection and Maintenance of the ZR202G Detector 12.2.1 Corrected explanation of Alarm 10 Added Filter to CMPL 11M12A01-04E, and added ZR20H Automatic Calibration Unit to CMPL 11M12A01-12E Oct. 2000/1st Edition Newly published Yokogawa Electric Corporation 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, JAPAN Homepage: http://www.yokogawa.com/ IM 11M12A01-04E 10th Edition : May 19, 2017-00